
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 31, 965-992 (2015)

965

Feature Selection and Extraction for Malware Classification

CHIH-TA LIN1, NAI-JIAN WANG1, HAN XIAO2 AND CLAUDIA ECKERT2

1Department of Electrical Engineering
National Taiwan University of Science and Technology

Taipei, 106 Taiwan
E-mail: {d9507932; njwang}@mail.ntust.edu.tw

2Chair for IT Security, Institute of Informatics
 Technischen Universität München

Garching, 85748 Germany
E-mail: {xiaoh; claudia.eckert}@in.tum.de

The explosive amount of malware continues their threats in network and operating

systems. Signature-based method is widely used for detecting malware. Unfortunately, it
is unable to determine variant malware on-the-fly. On the hand, behavior-based method
can effectively characterize the behaviors of malware. However, it is time-consuming to
train and predict for each specific family of malware. We propose a generic and efficient
algorithm to classify malware. Our method combines the selection and the extraction of
features, which significantly reduces the dimensionality of features for training and clas-
sification. Based on malware behaviors collected from a sandbox environment, our
method proceeds in five steps: (a) extracting n-gram feature space data from behavior
logs; (b) building a support vector machine (SVM) classifier for malware classification;
(c) selecting a subset of features; (d) transforming high-dimensional feature vectors into
low-dimensional feature vectors; and (e) selecting models. Experiments were conducted
on a real-world data set with 4,288 samples from 9 families, which demonstrated the ef-
fectiveness and the efficiency of our approach.

Keywords: dynamic malware analysis, data classification, dimensionality reduction, term
frequency inverse document frequency, principal component analysis, kernel principal
component analysis, support vector machine

1. INTRODUCTION

The growth of malicious programs is exponent. Symantec blocked approximately
5.5 billion malware attacks in 2011, yielding an increase greater than 81% compared
with 2010. [1] Signature-based antivirus systems are widely used for detecting viruses in
real time. However, according to AV-Comparatives statistics [2], commercial products
provide a 14%-69% detection rate regarding new malware. Moreover, viruses can be
easily manipulated by hackers, producing numerous variants. It is easy to change mal-
ware signatures to evade detection by anti-virus software; thus, it is impossible to update
the signature database as rapidly as the explosive speed at which malware variants are
developed.

The behaviors of two given malware variants remain similar, although their signa-
tures may be distinct. Recent studies have developed tools to monitor and analyze mal-
ware behaviors [3-12]. Egele [13] surveyed automated dynamic malware analysis tech-
niques and tools; automated dynamic analysis provides a report for each malware pro-
gram, describing its run-time behavior. The information yielded by these analysis tools

Received November 12, 2013; revised June 11 & September 1, 2014; accepted October 11, 2014.
Communicated by Shou-De Lin.

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

966

elucidates malware program behaviors, facilitating the timely and appropriate imple-
mentation of countermeasures. Rieck [14] analyzed malware behavior by using a CW-
Sandbox environment [12], identifying typical malware families as classified by standard
anti-virus software; after examining single-family models by using the machine learning
toolbox, a malware behavior classifier was constructed. The Institute for Information
Industry (III) developed a sandbox environment to record malware behavior; the sand-
box can collect the activity of a file, registry, or process. Compared with signature-based
methods, behavior-based methods can improve the accuracy of malware classification.
However, the time cost for training a classifier is higher than that of training a signature-
based method. The computational demands of a behavior-based method cannot meet the
requirements of a real-world scenario because excessive time is consumed during feature
extraction and model adaptation. Bordes [23] proposed a novel online algorithm, namely,
LASVM (fast large-scale support vector machine), which can reduce the execution time
by 30% when retraining the classifier; however, the time increased in O(n2) with respect
to the number of features.

To reduce the time cost of behavior-based malware detection, we propose a two-
stage dimensionality reduction approach, combining feature selection and extraction to
substantially reduce the time cost. Malware behavior logs were collected from a sandbox
environment, and an n-gram feature data set was generated based on function calls and
bag-of-words model. Feature selection and extraction methods were analyzed to reduce
the dimensionality of features, and a support vector machine (SVM) method was used to
build the classifier. We showed that using term frequency inverse document frequency
(TF-IDF), principal component analysis (PCA), and kernel principal component analysis
(KPCA) methods can reduce the number of dimensions, maintaining a promising predic-
tive accuracy. In addition, the selected and extracted features reflected the major behav-
iors of malware families. Moreover, we propose a multigrouping (MG) algorithm to fur-
ther improve classification in small feature sets. The proposed approach yielded promis-
ing performance and efficiency levels.

2. RELATED WORK

Dynamic behavior analysis is an effective method for predicting unknown malware.
Sun et al. [24] proposed a method for detecting worms and other malware by using se-
quences of WinAPI calls and depending on fixed API call addresses. Tsyganok et al. [25]
proposed a measure of similarity by using system calls to classify the malware. The clas-
sification error ranged from approximately 18.5% to 21.4%. Wang et al. [26] used two –
to three API function call sequences to describe eight suspicious behaviors. The experi-
ment involved using a Bayes algorithm to classify whether program was malicious and
achieved 93.98% when 80% of the data were used to train in 914 samples with 453 ma-
licious malwares. Hegedus et al. [27] proposed random projections and k-nearest neigh-
bor classifiers. By using the proposed methodology as well as the knowledge and expe-
rience of an F-Secure Corporation expert, 24 malware candidates were extracted from
2441 original candidates, of which 25% were known to be malicious and 50% were
likely to be malicious. Palahan et al. [28] collected 2393 executables from 50 malware
families to produce 2393 system call dependency graphs, and achieved an 86.77% accu-
racy result. Nakazato et al. [29] proposed a classification method that consists of two

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

967

primary techniques, namely N-gram and TF-IDF. The frequency of N-gram Windows
sequence API log data was extracted from 2312 malware samples. The characteristics of
the malware samples were deduced by using the TF-IDF technique. By using TF-IDF
scores and call sequences as the cluster algorithm for classification, the average precision
and recall were approximately 55% and 90%, respectively. For analysis of a substantial
amount of computing, Liu et al. [30] used MapReduce to reduce the overhead time to
improve performance by more than 30%. The experimental result regarding accuracy
was 45% (from 50% to 90%) for detecting Trojans, viruses, worms, and spyware. The
reduction in time cost in this study cannot be achieved if a high number of malwares or
features are used in the classifier. Unlike certain studies that have focused on the identi-
fication of specific Windows API call sequences, key values, and parameters for mal-
wares, our classifier incorporated a multigrouping (MG) TF-IDF and PCA, and a KPCA
algorithm was used to determine the effective API sequences and was combined with the
SVM learning algorithm. Determining the most effective API behavior composition for
malware families and rebuilding the classifier in a competitive time-saving manner is
easy. After conducting feature selection and extraction analysis, we determined the com-
position and weighting of behavior functions for malware families. Our results were
consistent with the general cognition of the major proportion of malware behaviors.

3. METHODOLOGY

To perform online malware analysis, the retraining and forecasting of updated mali-
cious behaviors must be completed as rapidly as possible; thus, the number of features
must be reduced in the learning and classification step. We exploited the feature selec-
tion and extraction techniques, using a support vector machine (SVM) classifier, pro-
posing a generic dimension reduction method to update the learning model in few sec-
onds. The following basic steps outline the proposed learning approach:

1: Behavior monitoring and data preprocessing. A corpus of malware binaries was exe-

cuted and logs were collected using a sandbox environment based on hardware virtu-
alization technology to avoid anti-malware detection. Regarding the application pro-
gramming interface (API) function calls, the feature data were generated based on
behavior logs by using the bag-of-words model.

2: Training and testing. Machine learning techniques were applied to classify malware
families and determine the optimal classifiers and parameters to achieve the ideal ac-
curacy and learning times.

3: Feature selection analysis. The effective feature set was calculated using the TF-IDF
algorithm. The feature weighting was determined based on the TF-IDF value to de-
termine which feature set yields the optimal accuracy and learning times.

4: Feature extraction analysis. The reduced feature dataset was converted from term fre-
quency data by using the PCA and KPCA algorithms to determine the optimal re-
duced feature set that yields the optimal accuracy and learning times.

5: Model selection and online extension. Based on the effective and reduced feature sets,
machine learning techniques were applied to classify the malware families; the goal
was to determine the optimal classifiers and parameters that yielded the ideal accuracy
and learning times.

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

968

These steps and the corresponding technical details are presented in detail in the
subsequent sections.

3.1 Behavior Monitoring and Data Preprocessing

The malware behavioral datasets were collected from a sandbox environment based

on the hardware virtualization technology developed by the Institute for Information In-
dustry (III). The malware was executed in a guest operation system (Microsoft OS) that
started on a host computer operation system (Xen) and communicated with a virtualiza-
tion layer. The sandbox recorded the behavior function calls from the guest operation
system, which include cross-matching data (hidden files, hidden registry, hidden connec-
tion), file Activity, registry activity, process activity, and generating a detailed report.

Table 1 provides an example of the operations observed in the analysis reports. The
report collected up to 150 seconds (approximately 30,000 procedures) of data after the
malware was executed.

Including the non-malware family programs, 4,288 samples of nine families were
executed and recorded. The malware families and numbers of each malware family were
shown in Table 2.

Table 1. An example of operations as reported by sandbox during run-time analysis.
No. Content
1 CALL name: [], cr3: [0xc08e000] pid: [856],tid: [908], NtOpenKey

(0x12fc74: 0x0, 0x80000000, 0x12f950:
\Registry\Machine\Software\Microsoft\Windows NT\CurrentVersion\Image
File Execution Options\Adware.Admedia.exe) ts-2012-02-11_00:23:42;

2 CALL name: [], cr3: [0xc08e000] pid: [856],tid: [908], NtOpenKey
(0x12fc74: 0x0, 0x80000000, 0x12f950:
\Registry\Machine\Software\Microsoft\Windows NT\CurrentVersion\Image
File Execution Options\Adware.Admedia.exe)

3 CALL name: [C:\Adware.Admedia.exe], cr3: [0xc08e000] pid: [856],tid:
[908], NtOpenKeyedEvent(0x12fb14: 0x7c99b140, 0x2000000, 0x12faec:
\KernelObjects\CritSecOutOfMemoryEvent) ts-2012-02-11_00:23:42;

… …

Table 2. The malware families and numbers of each malware family.
Label Malware families Number Sample names

1 Adware 377 Adware.Casino, Adware.Downloader,...
2 Virus/Exploit 76 Exploit.DCOM, Backdoor.Agent,...
3 Dialer 210 Dialer.Riprova, Dialer-110,...
4 Heuristic 348 Heuristic.Trojan, Heuristic.W32,...
5 Suspect.Trojan 129 Suspect.Trojan.Generic,...
6 Trojan 1510 Trojan.Agent, Trojan.Downloader,...
7 W32 207 W32.Luder, W32.Virut,...
8 Worm 1042 Worm.Allaple, Worm.Mydoom,...
9 Non-Malware 389 winlogon.exe, smss.exe,...

Total 4288

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

969

Most studies of malware dynamic analysis have attempted to clarify the specific
feature function sets of family behaviors. Rieck [14] based on the vector space and bag-
of-words models, finding shared behavioral patterns, and yielding implicit feature set
and the vector space data to analysis. For generic purposes, we extracted the function call
word for each analysis report, using the bag-of-words model to generate a high-dimen-
sional feature space corpus. A document is characterized by the frequencies of the words
it contains. We referred to the set of considered words as feature set F and denoted the
set of all analysis reports using D. Given a word   F and a report d  D, we deter-
mined the number of occurrences of n in d to calculate the frequency f = (d, ).

We derived an extracting function  that maps analysis reports to an |F|-dimen-
sional vector space by considering the frequencies of all words in F.

: D  R|F|, (D)  (f = (d, ))F (1)

The 4,288 documents yielded 187 distinct words; that is, F contained 187 dimen-

sions in the resulting vector space that corresponded to the frequencies of these words in
the analysis reports. The word  was encoded with identifiers that ranged from 1 to 187.
Table 3 listed the words and identifier of the corpus dictionary.

Table 3. Examples of the words and identifier of the corpus dictionary.
Identifier Name of words

1 NtOpenKey
2 NtOpen-KeyedEvent
3 NtQuerySystem-Information
4 NtAllocate-VirtualMemory
5 NtOpen-DirectoryObject
6 NtOpenSymbolic-LinkObject
7 NtQuerySymbolic-LinkObject
8 NtClose
9 NtFsControlFile

10 NtQueryVolumeInformationFile
… …

To analysis the effect of consecutive words, the n-gram model was applied in our
corpus. The unigram feature space f = (d, ) was equivalent to the bag-of-words model,
and the bigram to six-gram feature space were acquired based on the unigram feature
space. We assembled the consecutive words N from  in F to form n-gram feature set
FN. Given a word N  FN and a report d  D, we determined the number of occurrences
of n in d and calculated the frequency fN = (d, N). We derived an extracting function N
that maps the analysis reports to an |FN|-dimensional vector space by considering the
frequencies of all words in FN:

N: D  R|F

N
|, N(D)  (f = (d, N))NFN, N=1,6. (2)

The number and examples of n-gram words were shown in Table 4.

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

970

Table 4. The number and example of n-gram words.

n-gram
Number of

distinct word
Sample of Word

unigram 187 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
bigram 6740 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1 9, 1 10, 1 11, 1 12, 1 13, ...
trigram 46216 1 1 1, 1 1 2, 1 1 3, 1 1 4, 1 1 5, 1 1 6, 1 1 7, 1 1 8, 1 1 9, 1 1 10, ...

four-gram 130671 1 1 1 1, 1 1 1 2, 1 1 1 3, 1 1 1 4, 1 1 1 5, 1 1 1 6, 1 1 1 8, 1 1 1 10, ...
five-gram 242663 1 1 1 1 1, 1 1 1 1 3, 1 1 1 1 4, 1 1 1 1 5, 1 1 1 1 6, 1 1 1 1 10, ...
six-gram 367211 1 1 1 1 1 1, 1 1 1 1 1 2, 1 1 1 1 1 3, 1 1 1 1 1 4, 1 1 1 1 1 8, ...

3.2 Training and Testing

The n-gram feature space data fN = (d, N) introduced in the previous section can be

applied in various learning algorithms. SVMs [15] were originally designed for use in
binary classification. Hsu [16] constructed a multiclass classifier by combining several
binary classifiers. The training data from the ith and the jth classes in the one-against-one
method is required to solve the following binary classification problem:

1
() ()min

2, ,

() () 1 , if ,

() () 1 , if ,

0

t

ij T ij ij

ij ij ij t

ij T ij ij

t t t

ij T ij ij

t t t

ij

t

C
b

x b y i

x b y j



   

    



  
 
  
  



 (3)

where the training data xt are mapped to a high dimensional space by using the kernel
function , the penalty parameter is C, and the  is the normal vector to the hyperplane.
If sign (ij)T(xt)+bij indicates it is in the ith class, one is added to the vote for the ith
class. Otherwise, the jth is increased by one. Regarding the k class label, k(k1)/2 classi-
fiers must be constructed. The kernel is related to the transform (xi) by the equation k(xi,
xj) = (xt)(xt).

The SVM effectiveness depends on the kernel selection, the kernel parameters, and
soft margin parameter C. The Gaussian radial basis function k(xi, xj) = exp(γ||xi  xj||

2)
was used to maximize the hyperplane margins. The kernel parameters γ and cost param-
eters C must be estimated to yield the optimal prediction. The LIBSVM tool [17], which
is an established SVM method, was included in the test environment.

Fig. 1 shows the process of data training and classification. The new tuning γ and C
values are selected using a grid search, first using exponentially growing sequences, and
subsequently using a binary search for precision until the accuracy is less than 10-3.

Fig. 1. The process of the data training and classification.

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

971

3.3 Feature Selection Analysis

Learning calculation is extremely time-consuming for high-dimensional datasets.

The TF-IDF [18] is a numerical statistic that reflects the importance of words in docu-
ment collections or corpuses. Jing [19] used the TF-IDF feature selection method to pro-
cess data resources and establish the vector space model, providing a convenient data
structure for text categorization. A typical TF-IDF calculation can be expressed as follows:

Wi =TF(i, d)  IDF(i) (4)

where Wi is the weight of word ωi in document dD, TF(ωi, d) is the term frequency, or
the number of ωi in d, and

() log()
()i

i

D
IDF

DF



 (5)

where IDF is the inverse document frequency and DF(ωi) represents the appearance of
ωi in D. The largest value of IDF(ωi) occurs when ωi appears only in one document and
its effect is particularly substantial. To sort the weighting of ωi with all dD, we nor-
malized the sum of term frequency and modified the TF-IDF model as follows:

(,)
(),for all in .

max{ (,)}
i l

i i

i l

TF d
W IDF l D

TF d
 







 (6)

To enhance the accuracy of feature selection, we proposed the following MG TF-
IDF method:

,

, ,

(,)
, for all in and = 1,9.

max{ (,)}
i l k

i k i k

i l

TF d
W IDF l D k

TF d
 





 (7)

The Wi,k was calculated by picking the k-family of malware data, using individual-
ized feature selection for each malware family. ∑TF(ωi, dl,k) is sum of the term fre-
quency of ωi in the kth class. IDFi,k is the modified inverse document frequency for the
kth class:

'(1)

, 10 k kIDF IDF

i kIDF   (8)

where IDF′k = (IDF(ωi)IDF(ωi,k))/(|D||Dk|), indicates that the exceptive proportion of
ωi in the kth class dataset is as small as possible. IDFk = IDF(ωi,k)/|Dk|, indicates that the
apparent proportion of ωi in the kth class dataset is as large as possible.

Fig. 2 shows the feature selection process. Regarding data learning and classifica-
tion using the TF-IDF method, the first m features in the Wi sequence were selected to
train and classify. The initial γ and C could be chosen from the same values in the feature
domain training. We can determine the optimal accuracy by increasing m in the test. Re-
garding the MG TF-IDF method, the first m features in the Wi,k sequence for all nine
families were collected and filtered using the duplicate feature to test.

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

972

Fig. 2. The process of feature selection.

3.4 Feature Extraction Analysis

Feature extraction is a dimension reduction method that reduces the number of ran-

dom variables being considered. We introduced PCA and KPCA in the feature extraction
algorithms to reduce the time cost of learning calculation for high-dimensional datasets.

3.4.1 Principal component analysis

The central concept of PCA [20] is reducing the dimensionality of a dataset that
comprises numerous interrelated variables, retaining as much variation as possible within
the dataset. This is achieved by transforming to a new set of variables, the principal
components (PCs), which are uncorrelated and ordered so that the first retain most of the
variation present in the original variables. Given a dataset comprising m features (α′1,
α′2, …, α′m), the intent is to transform into a new set of p variables (α1, α2, …, αp) of
maximal variance. The first step is selecting a linear function α′1ω of the elements of ω
that exhibits maximal variance, where α′1 is a vector of p constants α11, α12, …, α1p, de-
noting transpose, where

'

1 11 1 12 2 1 1
1

... .
p

p p j j
j

                (9)

Next, a linear function α2ω is determined, which is uncorrelated with α′1ω and ex-
hibits maximal variance, and so on, so that at the mth stage a linear function α′mω exhib-
its a maximal variance subject to being uncorrelated with α′1ω, α′2ω,…, α′m-1ω. To derive
the form of the PC, first consider α′1ωi; the vector α′1 maximizes α′1ω = α′1∑1α1. To
maximize α′1∑1α1 subject to α′1α1 = 1, the standard approach is using the Lagrange mul-
tipliers technique, maximizing as follows:

111  1(11  1) (10)

where λ1 is a Lagrange multiplier. Differentiation with respect to α1 yields

11  11 = 0, 11 = 11 (11)
or

(1  1Ip)1 = 0, (12)

where Ip is the (p  p) identity matrix. Thus, λ1 is an eigenvalue of ∑1 and α1 is the cor-

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

973

responding eigenvector. ∑1 is the covariance matrix of feature 1,

1

1

1,| | obeservations of documents
,

| |

T

yl ylq
l D

D


 (13)

where 1 1 1 11 1
((,) () /() /

D

l l l
y f d y D


    is the standard dataset score value as calculated

based on the original dataset and σ1 is the standard deviation of 1st feature. The new fea-
ture space dataset g was generated as follows:

gj = yj, j = 1, p (14)

where the λ value could represent the degree of importance of the new vector, and λ1 > λ2

> λ3> … > λp.
To locate the principal component of each malware family, we proposed a MG PCA

method, solving the following problem for each kth family class:

(k  kIp)k = 0, k = 1, 9. (15)

We picked the kth class data from the training dataset and generated the standard
score value dataset yk. The new transformation vector k and λk were calculated for each
class. We reorganized the new transformation vector , which was chosen using class-
by-class selection and the λ sorted value. A new MG feature dataset g was generated
using gnew = yold.

Fig. 3 shows PCA feature extraction process; regarding PCA data learning and clas-
sification, the first m features in the new dataset g were selected to train and classify. We
can determine the optimal accuracy by increasing and testing m. Regarding the MG PCA
method, the first m features of gk in all nine families were collected for testing.

Fig. 3. The process of PCA feature extraction.

3.4.2 Kernel principal component analysis

The KPCA is a non-linear extension of the PCA. [21] Its advantages are nonlinear-
ity of eigenvectors and an increased number of eigenvectors. Karg [22] applied PCA,
KPCA and linear discriminant analysis to kinematic parameters and analyzed for feature

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

974

extraction. In PCA, the eigenvalue problem is solved as follows:

, where .
Tyy

D
    (16)

∑ is a covariance matrix. If we nonlinearly map the data into a feature space F by
using a non-linear map 

: RN  F, y  Y (17)

linear PCA is performed in the high-dimensional space F, corresponding to a non-linear
PCA in the original data space. The covariance matrix is calculated as follows:

T T
l l

NDC
      . (18)

The eigenvalue problem determines Eigenvalues λ ≥ 0 and Eigenvectors VF, sat-
isfying CV = λV, where V = Φ. This yields the following:

(T) = (T)N (19)

thus, the Eigenvalue problem becomes

(K  N) = 0 or K = (N), where K = T. (20)

The scalar product of Φ can be substituted with a kernel function K. In this study, a
Gaussian kernel K(xi, xj) = exp(γk||xixj||

2) was used.
The new feature space dataset g was generated using the following formula:

, 1,
T
j

j

K

jg j p 

 . (21)

Where λ1 > λ2 > λ3 > … > λp and the λ value could represent the degree of im-
portance of the new vector. To focus on finding the principal component of each mal-
ware family, we proposed an MG KPCA method. We solved the problem for each kth
family class as follows:

(Kk  Nk) = 0, k = 1, 9. (22)

We picked the kth class data from training dataset, generated the standard score
value dataset yk, and calculated Kk. The γk in Gaussian kernel K must be tuned to yield
the optimal transformation. The new transformation vectors k and λk were calculated for
each class. We reorganized the new transformation vector , which was selected class-
by-class, and by the λ sorted value. The new MG feature dataset g was generated using
gnew = TK/.

Fig. 4 shows the KPCA feature extraction process, involving data learning and clas-
sification. The first m features in new dataset g were selected to train and classify. The
optimal values of γk and m were determined using a grid search method in two loops.
Regarding the MG KPCA method, the first m features of gk in all nine families were col-
lected to test.

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

975

Fig. 4. The process of KPCA feature extraction.

3.5 Model Selection and Online Extension

The numbers and instances of features are the major time consumers in online ma-

chine learning. Bordes [23] proposed a novel online algorithm (LASVM) that converged
SVM solutions. The experimental evidence for diverse datasets indicates that the
LASVM method reliably reaches competitive accuracy levels after performing a single
pass of the training set. The effectiveness of LASVM could reduce the execution time by
30% when regenerating classifiers; the time increased in quadratic complexity (n2-order)
as the number of features increased. We propose a novel dimension reduction algorithm
to substantially reduce the number of features used in machine learning. Our two-stage
dimension reduction algorithm could save more than 99% of execution time during the
re-training process of high feature spaces. The proposed algorithm is described as fol-
lows:

f(d, )  F(f(d, ))  f(d, ), y(d, )  G(y(d, ))  g(d, m) 
H(g(d, m))  z(d). (23)

The first stage F(f(d, ω)) involves using the feature select algorithm detailed in Sec-

tion 3.3, where f(d, ω′) is the selected subset of the original dataset and y is the standard
score value of f. The second stage G(y(d, ω′)) involves using the feature extraction algo-
rithm detailed in Section 3.4, where g(d, m) is the dimension reduction dataset of y and
H(g(d, m)) is machine learning process that uses the SVM algorithm detailed in Section
3.2, yielding z(d) as the final prediction of document d to evaluate the accuracy. In prac-
tical online application, the parameters in this process should be adjusted to reduce the
learning time. The optimal parameters could be determined by using initial offline da-
taset. We used a 40% training dataset and f(d, ω)→F(f(d, ω))→f(d, ω′)→H(g(d, m))→z(d)
to determine the optimal feature subset, and then used Equation (4) to calculate the opti-
mal m and γk for feature reduction, γ and C for SVM.

The online training was simulated by initially collecting 40% of a dataset, and the
parameters were fixed in the following training and testing. The classifier was rebuilt to
accumulate 50% to 90% of the data in increments of 10% and tested for the subsequently
incoming 10% of the dataset.

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

976

4. EXPERIMENT

We collected 4,288 documents from nine family classes of malware samples, as de-
scribed in Section 3.1. Cross validation was used to identify effective parameters, allow-
ing the classifier to accurately predict unknown data and prevent overfitting. [18] In v-
fold cross-validation, the training set is divided into v subsets of equal size. Sequentially
one subset is tested using the classifier trained on the remaining v1 subsets. This is
called the holdout method if v = 2. We used three-part cross validation, modifying the
v-fold cross-validation to yield an estimate. We generated 10-fold data subsets: four sub-
sets were the training set, one subset was the estimate set used for optimal parameter
tuning, and the remaining five subsets were used in independent testing. Total 10 runs
were tested by random combination of 10-fold subsets data. A confusion matrix is a spe-
cific table layout that displays the performance level of a classification system; thus, a
confusion matrix table was generated and the accuracy was evaluated for each estimated
subset and testing subset.

4.1 Behavior Monitoring and Data Preprocessing

In the first experiment, we examined the general classification performance level of

the proposed malware behavior classifier. The learning and classification methods de-
scribed in Section 3.2 were used to analyze a unigram to six-gram dataset. Various
methods were used to evaluate our retrieval system. Table 5 lists the result of families for
the first-fold SVM test, using unigram, where TP no. = the number of true positives, FN
no. = the number of false negatives, FP no. = the number of false positives, TN no. = the
number of true negatives, accuracy A = (TP + TN)/(TP + FN + FP + TN), precision
(Sensitivity) P = TP/(TP + FP), recall R = TP/(TP + FN), specificity S = TN/(TN + FP),
negative predictive value N = TN/(TN + FN), and F-measure F = 2PR/(P + R).

Table 5. Various measures result of families by 1st run SVM test for unigram.
Label TP no. FN no. FP no. TN no. A P R S N F

1 184 16 33 1936 0.98 0.85 0.92 0.98 0.99 0.88
2 26 20 12 2111 0.99 0.68 0.57 0.99 0.99 0.62
3 87 11 12 2059 0.99 0.88 0.89 0.99 0.99 0.88
4 123 55 27 1964 0.96 0.82 0.69 0.99 0.97 0.75
5 50 16 23 2080 0.98 0.68 0.76 0.99 0.99 0.72
6 642 90 126 1311 0.9 0.84 0.88 0.91 0.94 0.86
7 57 51 34 2027 0.96 0.63 0.53 0.98 0.98 0.57
8 489 43 44 1593 0.96 0.92 0.92 0.97 0.97 0.92
9 183 26 17 1943 0.98 0.92 0.88 0.99 0.99 0.89

Table 6 lists the results of the 10-run SVM test for the unigram dataset, where

9 9 9

1 1 1

9 9 9

1 1 1

Micro Precision /() ,

Micro Recal /() ,

i i i
i i i

i i i
i i i

TP TP FP

TP TP FN

  

  

 

 

  

  

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

977

9 9 9

1 1 1

9 9 9

1 1 1

9

1

9

1

9

1

Micro Specificity /() ,

Micro Negative predictive value /() ,

Macro Precision / 9 ,

Macro Precision / 9 ,

Macro F / 9 ,

i i i
i i i

i i i
i i i

i
i

i
i

i
i

TN TN FP

TN TN FN

P

R

F

  

  







 

 







  

  







Table 6. The further measures result of families by 10-run SVM test for unigram.

nth Run Micro P Micro R Micro S Micro N
Macro

Precision
Macro
Recall

Macro F

1 0.8488 0.8488 0.9811 0.9811 0.8012 0.7801 0.7885
2 0.8418 0.8418 0.9802 0.9802 0.7784 0.7634 0.7693
3 0.8387 0.8387 0.9798 0.9798 0.7908 0.7866 0.7847
4 0.8413 0.8413 0.9802 0.9802 0.7856 0.7678 0.7743
5 0.8559 0.8559 0.9820 0.9820 0.7944 0.8047 0.7953
6 0.8583 0.8583 0.9823 0.9823 0.7827 0.7802 0.7803
7 0.835 0.835 0.9794 0.9794 0.7961 0.758 0.7703
8 0.8506 0.8506 0.9813 0.9813 0.8127 0.7888 0.7988
9 0.8555 0.8555 0.9819 0.9819 0.8152 0.8029 0.808

10 0.8398 0.8398 0.9800 0.9800 0.8033 0.7525 0.7744
average 0.8466 0.8466 0.9808 0.9808 0.796 0.7785 0.7844

The microprecision and micro recall values were the same for the multiclass classi-
fication, and the microspecificity and micronegative predictive values were the same. We
observed that all of the micronegative predictive values were higher than 97.9%. The
results revealed a satisfactory prediction for the negative predictive value. Therefore, the
experiments focused on overall true positives; in other words, the microprecision (and
recall) measure was used for assessing accuracy and optimizing the parameters. Figs. 5

(a) Recall (b) Negative predictive value

Fig. 5. The confusion result of families for unigram 1strun classify (C = 500, γ = 0.00000093).

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

978

and 6 show the confusion matrix results and micro measures results of the families in the
first-run SVM test for unigram. The matrix diagonal corresponds to the recall value of
each class, and the total accuracy was the micro recall value.

(a) Microprecision (= micro recall) (b) Micronegative predictive value

Fig. 6. The micro measures result of each family for unigram classify (C = 500, γ = 0.00000093).

(a) Average microprecision w.r.t. N-gram. (b) Time cost w.r.t N-gram.

Fig. 7. The microprecision and the time cost of n-gram experiments.

Fig. 7 shows the average microprecision of the used feature numbers and the corre-
sponding time costs of the n-gram experiments. The average values comprised the results
of the 10-run experiment. In Fig. 7 (a), the microprecision gradually increased from the
unigram to the four-gram experiment, inconspicuously increasing in the five-gram and
six-gram experiments; thus, numerous features in the increased five-gram and six-gram
experiments were redundant and ineffective. By contrast, in Fig. 7 (b), the time cost con-
tinually increased as the size of the feature dimension increased. The time costs of these
experiments failed to meet the requirements of online machine learning.

4.2 Feature Selection Analysis

In the first experiment, we determined that the time cost of a machine depended on

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

979

the feature dimension size and most features might be redundant and ineffective. Dimen-
sion reduction attempts to reduce the time cost of machine learning. In this experiment,
we selected the feature subsets of data by using various selection methods, conducting
learning and classification testing as described in Section 3.2. Fig. 8 shows the results of
the TF-IDF feature selection method (Section 3.3) as compared with those of the random
selection method. The MG TF-IDF feature selection method uses the smallest number of

(a) Unigram (b) Bigram

(c) Trigram (d) Four-gram

(e) Five-gram (f) Six-gram

Fig. 8. The microprecision results of diverse feature selection methods.

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

980

features, attaining similar microprecision levels; thus, the MG TF-IDF method precisely
selects the effective features of individual malware families and is superior to the TF-
IDF feature selection method, substantially reducing the required feature dimension, par-
ticularly in the proposed MG TF-IDF method, whereby 100-1000 selected features were
sufficient to maintain equivalent micro precision. Reducing the feature dimension to less
than 1% would allow time cost savings of 99% in high dimensional feature spaces.

As shown in Fig. 8, we observed that the accuracy of four-gram, five-gram, and six-
gram MG TF-IDF methods exhibited a similar tendency of increasing to nearly the same
final best accuracy.

The MG TF-IDF method effectively selected the major behaviors of each malware
family in the unigram test. Table 7 lists the first 10 major words of unigram selected by
MG TF-IDF method for malware families.

Table 7. The first 10 selected words of malware families by MG TF-IDF method in uni-

gram test.
 Adware Virus/Exploit Dialer
1 NtOpenKey NtClose NtWriteFile
2 NtClose NtOpenKey NtReadFile
3 NtQueryValueKey NtQueryValueKey NtClose
4 NtDelayExecution NtSetValueKey NtQueryValueKey
5 NtQueryKey NtCreateKey NtOpenKey
6 NtWaitForSingleObject NtAllocateVirtualMemory NtAllocateVirtualMemory
7 NtQueryInformationToken NtMapViewOfSection NtWaitForSingleObject
8 NtOpenThreadTokenEx NtQueryAttributesFile NtMapViewOfSection
9 NtOpenProcessTokenEx NtProtectVirtualMemory NtQueryAttributesFile

10 NtQueryInformationProcess NtReadVirtualMemory NtRequestWaitReplyPort
 Heuristic Suspect.Trojan Trojan
1 NtClose NtClose NtClose
2 NtOpenKey NtOpenKey NtQueryAttributesFile
3 NtQueryValueKey NtQueryValueKey NtOpenKey
4 NtQueryVirtualMemory NtMapViewOfSection NtDelayExecution
5 NtOpenFile NtReadVirtualMemory NtQueryDirectoryFile
6 NtQueryInformationProcess NtUnmapViewOfSection NtYieldExecution
7 NtQueryDirectoryFile NtQueryKey NtQueryValueKey
8 NtQueryInformationToken NtWaitForSingleObject NtOpenFile
9 NtAllocateVirtualMemory NtClearEvent NtQueryInformationProcess

10 NtMapViewOfSection NtQueryInformationToken NtMapViewOfSection
 W32 Worm Non-Malware
1 NtClose NtClose NtClose
2 NtOpenKey NtDelayExecution NtOpenKey
3 NtQueryValueKey NtAllocateVirtualMemory NtQueryValueKey
4 NtMapViewOfSection NtWaitForSingleObject NtWaitForSingleObject
5 NtReadVirtualMemory NtOpenKey NtQueryInformationToken
6 NtQueryAttributesFile NtCreateEvent NtAllocateVirtualMemory
7 NtUnmapViewOfSection NtDeviceIoControlFile NtReleaseMutant
8 NtAllocateVirtualMemory NtQueryValueKey NtMapViewOfSection
9 NtOpenThreadTokenEx NtRequestWaitReplyPort NtQueryDefaultLocale

10 NtOpenProcessTokenEx NtResumeThread NtEnumerateValueKey

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

981

In addition to the common function, we observed the following:

 The behaviors of peeping user preferences of operation appear in the Adware family.
(e.g. Query Key Value, Query Information)

 The behaviors of installing and launching program by weaknesses of service appear in
the Virus/Exploit family. (e.g. SetValueKey, CreateKey, AllocateVirtualMemory)

 The behaviors of sending information or files appear in the Dialer family. (e.g. Read/
Write File, WaitForSingleObject, RequestWaitReplyPort)

 The behaviors of evading the detection of antivirus system appear in the Heuristic fam-
ily. (e.g. QueryVirtualMemory, QueryInformationProcess, QueryDirectoryFile)

 The behaviors of loading the software into memory appear in the Suspect.Trojan fami-
ly, e.g. MapViewOfSection, ReadVirtualMemory, UnmapViewOfSection.

 The behaviors of launching the task and querying information of files appear in the
Trojan family. (e.g. QueryAttributesFile, DelayExecution, QueryDirectoryFile, Yield-
Execution)

 The behaviors of slowing down the operation of the windows system appear in the
W32 family. (e.g. QueryValueKey, ReadVirtualMemory, NtOpenThreadTokenEx, Nt-
Open-ProcessTokenEx)

 The behaviors of continuously copying files, installing and executing softwares appear
in the Worm family. (e.g. DelayExecution, CreateEvent, DeviceIoControlFile, Request-
WaitReplyPort, ResumeThread)

 The less maliciou behaviors appear in the Non-Malware family. (e.g. no CreateThread,
CreateKey, Read/Write File, AllocateVirtualMemory, DelayExecution)

Table A (Appendix A) lists the first 10 major words of further grams that were se-

lected using the MG TF-IDF method for Dialer malware and four-gram tests of Non-
malware. A spyware dialer is a malicious program that attempts to create a connection to
the Internet or another computer network over the analog telephone, modem, or Inte-
grated Services Digital Network (ISDN) by using WinAPIs. We observed that a serial of
NtWriteFile/NtReadFile words were selected in bi-, tri-, and four-gram test, convinced
the major behaviors of a spyware dialer. Besides, we observed that most behaviors in the
non-malware were key related operation, were significant differences with malware fam-
ilies.

Fig. 9 shows the results of the MG TF-IDF feature selection method from unigram
to six-gram. We observed that a high gram yielded favorable accuracy with sufficient
words (approximately 1000). If the number of selected features was low (e.g., 10), the
accuracy of a high gram was relatively poor. The number of combinations for front
ranking function in a high gram was high and accompanied by a low probability. A large
number of features caused over-training and resulted in no increase or decrease of test
accuracy. In general, the four-gram model demonstrated optimal performance regarding
the final accuracy compared with the five-gram model and high gram, and was sufficient
for representing the research results of using the most effective selection and parameter
tuning method. Besides, five-gram had a 4288242663 big dataset, maybe need to test in
Hadoop platform to solve the resource problem. Considering a large amount of memory
and an exponential increase in the time cost of a high gram compared with that of the
four-gram model, we focused on investigating unigram to four-gram models in practice.

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

982

Fig. 9. The microprecision results of diverse grams of MG TF-IDF feature selection.

4.3 Feature Extraction Analysis

Feature selection is a dimension reduction method that reduces the original mass

features. In this experiment, we converted the original feature data into new reduced
feature space data by using the feature extraction methods described in Section 3.4, con-
ducting learning and classification testing as described in Section 3.2.

The PCA and MG PCA method were used to extract the major behaviors of mal-
ware effectively to form few representative components. Table 8 lists the highest five
principal component score weightings and the combination of latent functions extracted
using the PCA method in the unigram test.

Table 8. The highest five principal component score weightings and the combination of

latent functions extracted using the PCA method in the unigram test.
 principal component score weighting

1st 0.242798
2nd 0.181731
3rd 0.126186
4th 0.068949
5th 0.062883

1st principal component 2nd principal component
Behavior function Percent contribution Behavior function Percent contribution

NtClose 44.17 NtQueryAttributesFile 25.93
NtQueryAttributesFile 14.61 NtReadFile 24.86

NtOpenKey 14.28 NtClose 19.95
NtQueryValueKey 6.01 NtWriteFile 14.27
NtDelayExecution 4.65 NtDelayExecution 10.14

NtOpenFile 3.47 NtOpenFile 6.30
NtQueryInformationProcess 2.29 NtQueryVirtualMemory 6.21
NtAllocateVirtualMemory 2.21 NtQueryInformationProcess 3.73

NtQueryDirectoryFile 2.04 NtReadVirtualMemory 3.70
NtMapViewOfSection 1.35 NtQueryDirectoryFile 3.51

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

983

Fig. 10. The microprecision results of diverse feature extraction methods.

We observed the increased operation of the registry key and memory in the first
principal component, and the increased operation of files in the second principal compo-
nent, corresponding to the generic cognition of virus attack characteristics.

Table B (Appendix B) lists the first principal component score weighting and the
combination of latent functions extracted using the MG PCA method for malware fami-
lies. The front ranking functions of each family were approaching to the MG TF-IDF
observations shown in Table 7.

Table C (Appendix C) lists the first principal component and the combination of la-
tent functions for additional grams that were selected using the MG KPCA method for
Dialer malware.

Fig. 10 shows the results of PCA and KPCA as compared with other feature extrac-
tion methods. MG KPCA demonstrated a substantial improvement in prediction accuracy.
As Kung [31] mentioned, the kernel approach dealt with the relationship and similarity
between training set and test set, the bigram test of MG KPCA method demonstrated a
substantial improvement (approximate 95% accuracy) in prediction accuracy. When the
number of transformed features was small, the MG KPCA method achieved greater mi-
croprecision than did the other feature reduction methods. As few as 10-30 transformed
features (i.e., 1-3 PCs selected from each malware group) could sufficiently represent in-
dividual characteristics, generating an accurate classification. By contrast, increasing the
number of transformed features yielded overfitting and reduced the microprecision levels.

 (a) Unigram (b) Bigram

 (c) Trigram d) Four-gram

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

984

Although the PCA and KPCA methods can minimize the time cost of the learning
and classification processes, it increases the time cost of the feature extraction process.
Table 9 shows the time cost for each estimate method. Compared with the training time
for the bag-of-words dataset and PCA methods, the MG PCA method reduced the time
cost by approximately 25%. The KPCA and MG KPCA methods doubled the time cost;
thus, the PCA and MG PCA methods were the most effective at reducing the time cost of
online training.

Table 9. The time cost (seconds) of 40% dataset training for various procedure.
 unigram bigram trigram four-gram
 F.E. SVM Total F.E. SVM Total F.E. SVM Total F.E. SVM Total

Bag of word 5.5 5.5 147 147 942 942 3074 3074
PCA 0.6 1.7 2.3 32 1.7 34 126 2 128 469 1.7 471

MG PCA 1.1 5.3 6.4 175 6.1 181 237 4.6 242 678 3.2 681
KPCA 46 1.9 48 458 3 461 2849 3.1 2852 6356 1.8 6358

MG KPCA 33 2.1 35 312 1.5 314 2452 1.4 2453 5971 1.7 5973
(Test environment: Quard-Core AMD Opteron(tm) Processor 2384, CPU: 800MHz)
(F.E.: The Process of Feature Extraction.)

4.4 Model Selection and Online Extension

Feature selection and extraction were verified to reduce time cost. In this experi-

ment, we combined these methods, forming a two-stage dimension reduction method as
described in Section 3.5, and conducting learning and classification testing as described
in Section 3.2. Online learning was simulated in accumulating 50% to 90% of the data in
increments of 10% to train and collected the subsequently incoming 10% of the dataset
to test.

The first online simulation experiment was comparing the effectiveness between all
feature selection and MG TF-IDF feature selected methods. Fig. 11 shows the micropre-
cision level and time cost results; the prediction microprecision value of both methods
were highly approaching, however, MG TF-IDF methods saved increasingly more time
as the n-gram number increased.

(a) Unigram (b) Bigram

Fig. 11. The microprecision level and time cost results of various combination methods.

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

985

(c) Trigram (d) Four-gram

Fig. 11. (Cont’d) The microprecision level and time cost results of various combination methods.

To decrease the time cost, we combined the MG TF-IDF and feature extraction
methods, forming a two-stage feature reduction method. Table 10 lists the selected and
extracted feature numbers in the experiment.

Table 10. The number of selected features and extracted feature of various experiment.
 unigram bigram trigram four-gram
 (1) (2) (1) (2) (1) (2) (1) (2)

MG TF-IDF + PCA 60 50 1000 50 1000 50 1000 50
MG TF-IDF + MG PCA 60 50 1000 100 1000 100 1000 100

MG TF-IDF + KPCA 60 50 1000 50 1000 50 1000 50
MG TF-IDF + MG KPCA 60 100 1000 100 1000 100 1000 100
(1: no. of selected feature, 2: no. of extracted feature)

Fig. 12 shows the microprecision results of the online training simulation, using

various combined methods. With the more data collected, the accuracy had gradually
increased. In the bigram to four-gram online simulations, the trends and value of predic-
tion microprecision were highly approaching to the whole selecting features test. The
accuracy of our feature selection and reduction approach continued to fit the perfor-
mance as original whole dataset test.

(a) Unigram (b) Bigram

Fig. 12. The microprecision results of various combination methods in online simulation.

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

986

(c) Trigram (d) Four-gram

Fig. 12. (Cont’d) The microprecision results of various combination methods in online simulation.

(a) Unigram (b) Bigram

(c) Trigram (d) Four-gram

Fig. 13. The total time cost results of the online training simulation.

Regarding the time cost analysis, Fig. 13 shows the total time cost results of the on-
line training simulation, using various combined methods. The MG TF-IDF selection
algorithm combined with the PCA or MG PCA extraction algorithms yielded the mini-
mal time cost. The accuracy of our feature selection and reduction approach continued to
fit the performance as original whole dataset test. The execute time of the rebuilding the
classifier was below 10s, the findings show that the proposed algorithm significantly

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

987

reduces the time cost and meets the online learning requirement of collecting malware
behavior every minute.

5. CONCLUSIONS

Using high-dimensional n-gramor mapping data space can enhance classification
predictions; however, such enhancements cost excessive computing time. The primary
contribution of this study is the proposed two-stage feature reduction method, which
substantially reduces the time cost of classifying malware behavior by using automatic
online learning. The key components of the proposed approach comprise (a) using the
MG TF-IDF feature selection method to precisely select the effective features of data
subsets in the first stage; (b) using PCA or KPCA to convert the original feature space to
a low PC feature space in the second stage; (c) automatically tuning the learning and
classification by using learning algorithms; and (d) combining feature selection and ex-
traction with learning and classification, and applying these methods to online detection.
The malware behavior log data were collected from a sandbox environment based on
hardware virtualization technology. The proposed system executed and recorded 4,288
samples from nine malware families. The dimensionality reduction, TF-IDF, PCA, and
KPCA methods were analyzed to reduce the time cost of classification. Furthermore, we
proposed an MG algorithm for each feature of the reduction method; the findings
showed the effectiveness of its feature reduction. Moreover, we evaluated our method by
using an online training simulation experiment. Our two-stage dimensionality reduction
approach substantially reduced time costs. Combining the MG TF-IDF, PCA, and SVM
methods for online training allows the re-training and classifying procedures to be com-
pleted in few seconds, meeting the online learning requirements for collecting malware
behavior every minute. The proposed sandbox test environment uses a similar concept as
hypervisor architecture that is easily applied to cloud environments. The propose ap-
proach offers a competitive malware detection procedure.

APPENDIX A

Table A. The first 10 words of Dialer malware selected using the MG TF-IDF method
from the bigram to four-gram tests and four-gram tests of Non-malware.

 bigram trigram
1 NtWriteFile, NtReadFile NtWriteFile, NtReadFile, NtWriteFile

2 NtReadFile, NtWriteFile NtReadFile, NtWriteFile, NtReadFile

3 NtQueryValueKey, NtQueryValueKey NtQueryValueKey, NtQueryValueKey, NtQueryValueKey

4 NtOpenKey, NtOpenKey NtWriteFile, NtWriteFile, NtWriteFile

5 NtOpenKey, NtQueryValueKey NtOpenKey, NtQueryValueKey, NtClose

6 NtWriteFile, NtWriteFile NtQueryInformationToken, NtClose, NtOpenKey

7 NtClose, NtOpenKey NtOpenProcessTokenEx, NtQueryInformationToken, NtClose

8 NtQueryValueKey, NtClose NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken

9 NtClose, NtClose NtClose, NtOpenKey, NtQueryValueKey

10 NtFsControlFile, NtWait-

ForSingleObject

NtWaitForSingleObject, NtFsControlFile, NtWait-

ForSingleObject

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

988

 four-gram tests of Dialer malware
1 NtReadFile, NtWriteFile, NtReadFile, NtWriteFile

2 NtWriteFile, NtReadFile, NtWriteFile, NtReadFile

3 NtQueryValueKey, NtQueryValueKey, NtQueryValueKey, NtQueryValueKey

4 NtWriteFile, NtWriteFile, NtWriteFile, NtWriteFile

5 NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken, NtClose

6 NtOpenProcessTokenEx, NtQueryInformationToken, NtClose, NtOpenKey

7 NtReadFile, NtReadFile, NtReadFile, NtReadFile

8 NtFsControlFile, NtWaitForSingleObject, NtFsControlFile, NtWaitForSingleObject

9 NtDelayExecution, NtRequestWaitReplyPort, NtDelayExecution, NtRequestWaitReplyPort

10 NtRequestWaitReplyPort, NtDelayExecution, NtRequestWaitReplyPort, NtDelayExecution

 four-gram tests of Non-malware
1 NtEnumerateValueKey, NtEnumerateValueKey, NtEnumerateValueKey, NtEnumerateValueKey

2 NtQueryValueKey, NtQueryValueKey, NtQueryValueKey, NtQueryValueKey

3 NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken, NtClose

4 NtOpenProcessTokenEx, NtQueryInformationToken, NtClose, NtOpenKey

5 NtDuplicateObject, NtQueryValueKey, NtQueryValueKey, NtClose

6 NtQueryKey, NtDuplicateObject, NtQueryValueKey, NtQueryValueKey

7 NtEnumerateKey, NtOpenKey, NtEnumerateKey, NtOpenKey

8 NtClose, NtClose, NtQueryKey, NtDuplicateObject

9 NtOpenKey, NtEnumerateKey, NtOpenKey, NtEnumerateKey

10 NtClose, NtQueryKey, NtDuplicateObject, NtQueryValueKey

APPENDIX B

Table B. The first principal component (PC) score weighting and the combination of
latent functions extracted using the MG PCA method for malware families.

Malware family PC score
weighting

Malware family PC score
weighting

Adware 1st PC 0.835169 Virus/Exploit 1st PC 0.677811
Dialer 1st PC 0.980597 Heuristic 1st PC 0.282665

Suspect.Trojan 1st PC 0.499817 Trojan 1st PC 0.363542
W32 1st PC 0.478477 Worm 1st PC 0.433603

Non-Malware 1st PC 0.552503
Adware 1st principal component Virus/Exploit 1st principal component

function contribution function contribution
NtOpenKey 36.67 NtClose 72.40

NtClose 32.34 NtOpenKey 11.07
NtQueryValueKey 11.64 NtQueryValueKey 9.52

NtQueryKey 3.26 NtSetValueKey 2.74
NtDelayExecution 3.15 NtCreateKey 2.39
Dialer 1st principal component Heuristic 1st principal component

function contribution function contribution
NtReadFile 84.56 NtClose 31.71
NtWriteFile 33.37 NtOpenKey 27.15

NtRequestWaitReplyPort 1.27 NtQueryVirtualMemory 19.89
NtQueryVirtualMemory 0.66 NtQueryValueKey 11.80
NtEnumerateValueKey 0.52 NtContinue 1.63

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

989

Suspect.Trojan 1st principal component Trojan 1st principal component
function contribution function contribution

NtOpenKey 29.16 NtQueryAttributesFile 33.80
NtClose 20.98 NtClose 29.26

NtQueryValueKey 13.47 NtReadFile 16.07
NtMapViewOfSection 10.27 NtOpenKey 7.97

NtUnmapViewOfSection 5.88 NtDelayExecution 6.92

W32 1st principal component Worm 1st principal component
function contribution function contribution
NtClose 39.68 NtClose 61.23

NtOpenKey 25.29 NtAllocateVirtualMemory 12.46
NtQueryValueKey 15.83 NtWaitForSingleObject 3.46

NtWriteFile 4.38 NtDeviceIoControlFile 3.27
NtWaitForSingleObject 2.43 NtDelayExecution 3.19

Non-Malware 1st principal component
function contribution
NtClose 40.74

NtOpenKey 21.79
NtQueryValueKey 20.91

NtWaitForSingleObject 2.23
NtQueryInformationToken 2.23

APPENDIX C

Table C. The first principal component (PC) score weighting (SW) and the combination
of the highest 10 latent functions extracted using the MG PCA method for
Dialer malware in bigram to four-gram tests.

Bigram 1st PC SW= 0.991028 Trigram 1st PC SW= 0.993501
 Functions Contribution Functions Contribution

1 NtWriteFile, NtReadFile 39.34 NtQueryValueKey, NtQueryValueKey,
NtQueryValueKey

24.38

2 NtQueryValueKey, NtQueryValueKey 10.69 NtReadFile, NtWriteFile, NtReadFile 15.66

3 NtOpenKey, NtOpenKey 8.97 NtWriteFile, NtReadFile, NtWriteFile 14.33

4 NtClose, NtOpenKey 6.23 NtOpenKey, NtQueryValueKey, NtClose 4.91

5 NtOpenKey, NtQueryValueKey 5.32 NtWriteFile, NtWriteFile, NtWriteFile 4.08

6 NtWriteFile, NtWriteFile 4.93 NtClose, NtOpenKey, NtQueryValueKey 2.55

7 NtQueryValueKey, NtClose 4.70 NtQueryInformationToken, NtClose, NtOpenKey 2.30

8 NtReadFile, NtWriteFile 2.88 NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken 2.21

9 NtFsControlFile, NtWaitForSingleObject 2.21 NtOpenProcessTokenEx, NtQueryInformationToken, NtClose 2.21

10 NtQueryInformationToken, NtClose 2.16 NtWaitForSingleObject, NtFsControlFile,
NtWaitForSingleObject

 1.91

 four-gram 1st PC SW= 0.994641
 Functions Contribution
1 NtQueryValueKey, NtQueryValueKey, NtQueryValueKey, NtQueryValueKey 27.11

2 NtWriteFile, NtReadFile, NtWriteFile, NtReadFile 12.85

3 NtReadFile, NtWriteFile, NtReadFile, NtWriteFile 10.61

4 NtWriteFile, NtWriteFile, NtWriteFile, NtWriteFile 5.10

5 NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken, NtClose 4.14

6 NtOpenProcessTokenEx, NtQueryInformationToken, NtClose, NtOpenKey 4.11

7 NtFsControlFile, NtWaitForSingleObject, NtFsControlFile, NtWaitForSingleObject 2.64

8 NtQueryKey, NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken 2.00

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

990

9 NtReadFile, NtReadFile, NtReadFile, NtReadFile 1.85

10 NtWaitForSingleObject, NtFsControlFile, NtWaitForSingleObject, NtFsControlFile 1.55

REFERENCES

1. Symantec, “Internet security threat report 2011 Trends,” Symantec, Vol. 17, 2012,
http://www.symantec.com/threatreport/.

2. AV-Comparatives.org, “Anti-virus comparative  Proactive/retrospective test,” AV-
Comparatives.org, http://www.av-comparatives.org/images/docs/avcbeh200905en.
pdf, 2009

3. P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. C. Freiling, “The nepenthes
platform: An efficient approach to collect malware,” in Proceedings of the 9th Sym-
posium on Recent Advances in Intrusion Detection, 2006, pp. 165-184.

4. U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A tool for analyzing malware,” in
Proceedings of the 15th European Institute for Computer Antivirus Research Annual
Conference, 2006, pp. 180-192.

5. U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of malicious
code,” Journal in Computer Virology, Vol. 2, 2006, pp. 67-77.

6. X. Jiang and D. Xu, “Collapsar: A VM-based architecture for network attack deten-
tion center,” in Proceedings of the 13th USENIX Security Symposium, pp. Vol. 29,
2004, pp. 65-66.

7. C. Leita, M. Dacier, and F. Massicotte, “Automatic handling of protocol dependen-
cies and reaction to 0-day attacks with ScriptGen based honeypots,” in Proceedings
of the 9th Symposium on Recent Advances in Intrusion Detection, 2006, pp. 185-
205.

8. A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for mal-
ware analysis,” in Proceedings of IEEE Symposium on Security and Privacy, 2007,
pp. 231-245.

9. Norman, “Norman sandbox information center,” Norman, http://sandbox.norman.no/,
2007.

10. F. Pouget, M. Dacier, and V. H. Pham, “Leurre.com: on the advantages of deploying
a large scale distributed honeypot platform,” in Proceedings of E-Crime and Com-
puter Conference, 2005, http://www.eurecom.fr/publication/1558.

11. M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M. Voelker,
and S. Savage, “Scalability, fidelity, and containment in the potemkin virtual honey-
farm,” in Proceedings of ACM Symposium on Operating System Principles, Vol. 39,
2005, pp. 148-162.

12. C. Willems, T. Holz, and F. Freiling, “CWSandbox: Towards automated dynamic
binary analysis,” IEEE Security and Privacy, Vol. 5, 2007, pp. 32-39.

13. M. Egele, T. S. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic
malware-analysis techniques and tools,” ACM Computing Surveys, Vol. 44, 2012, pp.
6:1-6:42.

14. K. Rieck, T. Holz, C. Willems, P. Dussel, and P. Laskov, “Leaming and classifica-
tion of malware behavior,” in Proceedings of the 5th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, 2008, pp. 108-

FEATURE SELECTION AND EXTRACTION FOR MALWARE CLASSIFICATION

991

125.
15. C. Cortes and V. Vapnik, “Support-vector network,” Machine Learning, Vol. 20,

1995, pp. 273-297.
16. C. Hsu and C. Lin, “A comparison of methods for multiclass support vector ma-

chines,” IEEE Transactions on Neural Networks, Vol. 13, 2002, pp. 274-282.
17. C. C. Chang and C. J. Lin, “LIBSVM, a library for support vector machines,” http://

www.csie.ntu.edu.tw/cjlin/libsvm, 2012.
18. G. Salton and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-

Hill, ISBN 0-07-054484-0, 1986.
19. L.-P. Jing, H.-K. Huang, and H.-B. Shi, “Improved feature selection approach

TFIDF in text mining,” in Proceedings of International Conference on Machine
Learning and Cybernetics, 2002, pp. 944-946.

20. I. T. Jolliffe, Principal Component Analysis, Springer, 2nd ed., 2002.
21. B. Scholkopf, A. Smola, and K.-R. Muller, “Kernel principal component analysis,”

in Proceedings of International Conference on Artificial Neural Networks, Vol.
1327, 1997, pp. 583-588.

22. M. Karg, R. Jenke, W. Seiberl, K. Kuhnlenz, A. Schwirtz, and M. Buss, “Compari-
son of PCA, KPCA and LDA for feature extraction to recognize affect in gait kine-
matics,” in Proceedings of the 3rd International Conference on Affective Computing
and Intelligent Interaction and Workshops, 2009, pp. 1-6.

23. A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classifiers with online
and active learning,” Journal of Machine Learning Research, Vol. 6, 2005, pp.
1579-1619.

24. H. Sun, Y. Lin, and M. Wu, “Api monitoring system for defeating worms and ex-
ploits in ms-windows system,” in Proceedings of the 11th Australasian Conference
on Information Security and Privacy, 2006, pp. 159-170.

25. K. Tsyganok, E. Tumoyan, M. Anikeev, and L. Babenko, “Classification of poly-
morphic and metamorphic malware samples based on their behavior,” in Proceed-
ings of the 5th International Conference on Security of Information and Networks,
2012, pp. 111-116.

26. C. Wang, J. Pang, R. Zhao, W. Fu, and X. Liu, “Malware detection based on suspi-
cious behavior identification, ” in Proceedings of the 1st International Workshop on
Education Technology and Computer Science, 2009, pp. 198-202.

27. J. Hegedus, Y. Miche, A. Ilin, and A. Lendasse, “Methodology for behavioral-based
malware analysis and detection using random projections and k-nearest neighbors
classifiers,” in Proceedings of the 7th International Conference on Computational
Intelligence and Security, 2011, pp. 1016-1023.

28. S. Palahan, D. Babic, S. Chaudhuri, and D. Kifer, “Extraction of statistically signifi-
cant malware behaviors,” in Proceedings of the 29th Annual Computer Security Ap-
plications Conference, 2013, pp. 69-78.

29. J. Nakazato, J. Song, M. Eto, D. Inoue, and K. Nakao, “A novel malware clustering
method using frequency of function call traces in parallel threads,” IEICE Transac-
tions on Information and Systems, Vol. E94-D, 2011, pp. 2150-2158.

30. S. Liu, H. Huang, and Y. Chen, “A system call analysis method with mapreduce for
malware detection,” in Proceedings of the 17th IEEE International Conference on
Parallel and Distributed Systems, 2011, pp. 631-637.

CHIH-TA LIN, NAI-JIAN WANG, HAN XIAO AND CLAUDIA ECKERT

992

31. S. Y. Kung, Kernel Methods and Machine Learning, Cambridge University Press,
UK, 2014.

Chih-Ta Lin (林志達) is a Ph.D. student in School of Elec-
trical Engineering at National Taiwan University of Science and
Technology, Taiwan. He received his Master degree in Chemical
Engineering from Taiwan University in 1989. He currently work
for CyberTrust Technology Institute at Institute for Information
Industry. His research focuses on malware behavior analysis, big
data security analysis, data mining and information retrieval.

 Nai-Jian Wang (王乃堅) received his MS and Ph.D. de-
grees in Electrical Engineering from University of California, Los
Angeles, USA. He is currently an Associate Professor in the De-
partment of Electrical Engineering at National Taiwan University
of Science and Technology, Taiwan. His main research interests
include multimedia signal processing, digital design on FPGA,
embedded system, computer vision, intelligent computing and op-
timization.

Han Xiao is a Ph.D. student in the Department of Informatics
at the Technischen Universität München, Germany. He received
his Master degree in Informatics Science from Technischen Uni-
versität München in 2011. His research focuses on kernel methods
(e.g. Gaussian process, support vector machines), optimization al-
gorithms and probabilistic graphical models; as well as their ap-
plications in information security, data mining and information re-
trieval.

Claudia Eckert is a Professor in the Department of Informa-
tics at the Technische Universität München. She is currently head
of the chair for IT Security. She is simultaneously the director of
the Fraunhofer Research Institution for Applied and Integrated
Security (AISEC).

