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The explosive amount of malware continues their threats in network and operating 

systems. Signature-based method is widely used for detecting malware. Unfortunately, it 
is unable to determine variant malware on-the-fly. On the hand, behavior-based method 
can effectively characterize the behaviors of malware. However, it is time-consuming to 
train and predict for each specific family of malware. We propose a generic and efficient 
algorithm to classify malware. Our method combines the selection and the extraction of 
features, which significantly reduces the dimensionality of features for training and clas-
sification. Based on malware behaviors collected from a sandbox environment, our 
method proceeds in five steps: (a) extracting n-gram feature space data from behavior 
logs; (b) building a support vector machine (SVM) classifier for malware classification; 
(c) selecting a subset of features; (d) transforming high-dimensional feature vectors into 
low-dimensional feature vectors; and (e) selecting models. Experiments were conducted 
on a real-world data set with 4,288 samples from 9 families, which demonstrated the ef-
fectiveness and the efficiency of our approach.  
 
Keywords: dynamic malware analysis, data classification, dimensionality reduction, term 
frequency inverse document frequency, principal component analysis, kernel principal 
component analysis, support vector machine  
 
 

1. INTRODUCTION 
 

The growth of malicious programs is exponent. Symantec blocked approximately 
5.5 billion malware attacks in 2011, yielding an increase greater than 81% compared 
with 2010. [1] Signature-based antivirus systems are widely used for detecting viruses in 
real time. However, according to AV-Comparatives statistics [2], commercial products 
provide a 14%-69% detection rate regarding new malware. Moreover, viruses can be 
easily manipulated by hackers, producing numerous variants. It is easy to change mal-
ware signatures to evade detection by anti-virus software; thus, it is impossible to update 
the signature database as rapidly as the explosive speed at which malware variants are 
developed.  

The behaviors of two given malware variants remain similar, although their signa-
tures may be distinct. Recent studies have developed tools to monitor and analyze mal-
ware behaviors [3-12]. Egele [13] surveyed automated dynamic malware analysis tech-
niques and tools; automated dynamic analysis provides a report for each malware pro-
gram, describing its run-time behavior. The information yielded by these analysis tools 
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elucidates malware program behaviors, facilitating the timely and appropriate imple-
mentation of countermeasures. Rieck [14] analyzed malware behavior by using a CW- 
Sandbox environment [12], identifying typical malware families as classified by standard 
anti-virus software; after examining single-family models by using the machine learning 
toolbox, a malware behavior classifier was constructed. The Institute for Information 
Industry (III) developed a sandbox environment to record malware behavior; the sand-
box can collect the activity of a file, registry, or process. Compared with signature-based 
methods, behavior-based methods can improve the accuracy of malware classification. 
However, the time cost for training a classifier is higher than that of training a signature- 
based method. The computational demands of a behavior-based method cannot meet the 
requirements of a real-world scenario because excessive time is consumed during feature 
extraction and model adaptation. Bordes [23] proposed a novel online algorithm, namely, 
LASVM (fast large-scale support vector machine), which can reduce the execution time 
by 30% when retraining the classifier; however, the time increased in O(n2) with respect 
to the number of features.  

To reduce the time cost of behavior-based malware detection, we propose a two- 
stage dimensionality reduction approach, combining feature selection and extraction to 
substantially reduce the time cost. Malware behavior logs were collected from a sandbox 
environment, and an n-gram feature data set was generated based on function calls and 
bag-of-words model. Feature selection and extraction methods were analyzed to reduce 
the dimensionality of features, and a support vector machine (SVM) method was used to 
build the classifier. We showed that using term frequency inverse document frequency 
(TF-IDF), principal component analysis (PCA), and kernel principal component analysis 
(KPCA) methods can reduce the number of dimensions, maintaining a promising predic-
tive accuracy. In addition, the selected and extracted features reflected the major behav-
iors of malware families. Moreover, we propose a multigrouping (MG) algorithm to fur-
ther improve classification in small feature sets. The proposed approach yielded promis-
ing performance and efficiency levels. 

2. RELATED WORK 

Dynamic behavior analysis is an effective method for predicting unknown malware. 
Sun et al. [24] proposed a method for detecting worms and other malware by using se-
quences of WinAPI calls and depending on fixed API call addresses. Tsyganok et al. [25] 
proposed a measure of similarity by using system calls to classify the malware. The clas-
sification error ranged from approximately 18.5% to 21.4%. Wang et al. [26] used two – 
to three API function call sequences to describe eight suspicious behaviors. The experi-
ment involved using a Bayes algorithm to classify whether program was malicious and 
achieved 93.98% when 80% of the data were used to train in 914 samples with 453 ma-
licious malwares. Hegedus et al. [27] proposed random projections and k-nearest neigh-
bor classifiers. By using the proposed methodology as well as the knowledge and expe-
rience of an F-Secure Corporation expert, 24 malware candidates were extracted from 
2441 original candidates, of which 25% were known to be malicious and 50% were 
likely to be malicious. Palahan et al. [28] collected 2393 executables from 50 malware 
families to produce 2393 system call dependency graphs, and achieved an 86.77% accu-
racy result. Nakazato et al. [29] proposed a classification method that consists of two 
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primary techniques, namely N-gram and TF-IDF. The frequency of N-gram Windows 
sequence API log data was extracted from 2312 malware samples. The characteristics of 
the malware samples were deduced by using the TF-IDF technique. By using TF-IDF 
scores and call sequences as the cluster algorithm for classification, the average precision 
and recall were approximately 55% and 90%, respectively. For analysis of a substantial 
amount of computing, Liu et al. [30] used MapReduce to reduce the overhead time to 
improve performance by more than 30%. The experimental result regarding accuracy 
was 45% (from 50% to 90%) for detecting Trojans, viruses, worms, and spyware. The 
reduction in time cost in this study cannot be achieved if a high number of malwares or 
features are used in the classifier. Unlike certain studies that have focused on the identi-
fication of specific Windows API call sequences, key values, and parameters for mal-
wares, our classifier incorporated a multigrouping (MG) TF-IDF and PCA, and a KPCA 
algorithm was used to determine the effective API sequences and was combined with the 
SVM learning algorithm. Determining the most effective API behavior composition for 
malware families and rebuilding the classifier in a competitive time-saving manner is 
easy. After conducting feature selection and extraction analysis, we determined the com- 
position and weighting of behavior functions for malware families. Our results were 
consistent with the general cognition of the major proportion of malware behaviors. 

3. METHODOLOGY 

To perform online malware analysis, the retraining and forecasting of updated mali-
cious behaviors must be completed as rapidly as possible; thus, the number of features 
must be reduced in the learning and classification step. We exploited the feature selec-
tion and extraction techniques, using a support vector machine (SVM) classifier, pro-
posing a generic dimension reduction method to update the learning model in few sec-
onds. The following basic steps outline the proposed learning approach:     

 
1: Behavior monitoring and data preprocessing. A corpus of malware binaries was exe-

cuted and logs were collected using a sandbox environment based on hardware virtu-
alization technology to avoid anti-malware detection. Regarding the application pro-
gramming interface (API) function calls, the feature data were generated based on 
behavior logs by using the bag-of-words model. 

2: Training and testing. Machine learning techniques were applied to classify malware 
families and determine the optimal classifiers and parameters to achieve the ideal ac-
curacy and learning times. 

3: Feature selection analysis. The effective feature set was calculated using the TF-IDF 
algorithm. The feature weighting was determined based on the TF-IDF value to de-
termine which feature set yields the optimal accuracy and learning times. 

4: Feature extraction analysis. The reduced feature dataset was converted from term fre-
quency data by using the PCA and KPCA algorithms to determine the optimal re-
duced feature set that yields the optimal accuracy and learning times. 

5: Model selection and online extension. Based on the effective and reduced feature sets, 
machine learning techniques were applied to classify the malware families; the goal 
was to determine the optimal classifiers and parameters that yielded the ideal accuracy 
and learning times. 
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These steps and the corresponding technical details are presented in detail in the 
subsequent sections. 

 
3.1 Behavior Monitoring and Data Preprocessing 

 
The malware behavioral datasets were collected from a sandbox environment based 

on the hardware virtualization technology developed by the Institute for Information In- 
dustry (III). The malware was executed in a guest operation system (Microsoft OS) that 
started on a host computer operation system (Xen) and communicated with a virtualiza-
tion layer. The sandbox recorded the behavior function calls from the guest operation 
system, which include cross-matching data (hidden files, hidden registry, hidden connec-
tion), file Activity, registry activity, process activity, and generating a detailed report.  

Table 1 provides an example of the operations observed in the analysis reports. The 
report collected up to 150 seconds (approximately 30,000 procedures) of data after the 
malware was executed. 

Including the non-malware family programs, 4,288 samples of nine families were 
executed and recorded. The malware families and numbers of each malware family were 
shown in Table 2. 

 

Table 1. An example of operations as reported by sandbox during run-time analysis. 
No. Content 
1 CALL name: [], cr3: [0xc08e000] pid: [856],tid: [908], NtOpenKey 

(0x12fc74: 0x0, 0x80000000, 0x12f950: 
\Registry\Machine\Software\Microsoft\Windows NT\CurrentVersion\Image 
File Execution Options\Adware.Admedia.exe) ts-2012-02-11_00:23:42; 

2 CALL name: [], cr3: [0xc08e000] pid: [856],tid: [908], NtOpenKey 
(0x12fc74: 0x0, 0x80000000, 0x12f950: 
\Registry\Machine\Software\Microsoft\Windows NT\CurrentVersion\Image 
File Execution Options\Adware.Admedia.exe) 

3 CALL name: [C:\Adware.Admedia.exe], cr3: [0xc08e000] pid: [856],tid: 
[908], NtOpenKeyedEvent(0x12fb14: 0x7c99b140, 0x2000000, 0x12faec: 
\KernelObjects\CritSecOutOfMemoryEvent) ts-2012-02-11_00:23:42; 

… … 

Table 2. The malware families and numbers of each malware family. 
Label Malware families Number Sample names 

1 Adware 377 Adware.Casino, Adware.Downloader,... 
2 Virus/Exploit 76 Exploit.DCOM, Backdoor.Agent,... 
3 Dialer 210 Dialer.Riprova, Dialer-110,... 
4 Heuristic 348 Heuristic.Trojan, Heuristic.W32,... 
5 Suspect.Trojan 129 Suspect.Trojan.Generic,...  
6 Trojan 1510 Trojan.Agent, Trojan.Downloader,... 
7 W32 207 W32.Luder, W32.Virut,... 
8 Worm 1042 Worm.Allaple, Worm.Mydoom,... 
9 Non-Malware 389 winlogon.exe, smss.exe,... 

Total  4288  
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Most studies of malware dynamic analysis have attempted to clarify the specific 
feature function sets of family behaviors. Rieck [14] based on the vector space and bag- 
of-words models, finding shared behavioral patterns, and yielding implicit feature set 
and the vector space data to analysis. For generic purposes, we extracted the function call 
word for each analysis report, using the bag-of-words model to generate a high-dimen- 
sional feature space corpus. A document is characterized by the frequencies of the words 
it contains. We referred to the set of considered words as feature set F and denoted the 
set of all analysis reports using D. Given a word   F and a report d  D, we deter-
mined the number of occurrences of n in d to calculate the frequency f = (d, ). 

We derived an extracting function  that maps analysis reports to an |F|-dimen- 
sional vector space by considering the frequencies of all words in F.  

 

: D  R|F|, (D)  (f = (d, ))F   (1) 

 
The 4,288 documents yielded 187 distinct words; that is, F contained 187 dimen-

sions in the resulting vector space that corresponded to the frequencies of these words in 
the analysis reports. The word  was encoded with identifiers that ranged from 1 to 187. 
Table 3 listed the words and identifier of the corpus dictionary.  

Table 3. Examples of the words and identifier of the corpus dictionary. 
Identifier Name of words 

1 NtOpenKey 
2 NtOpen-KeyedEvent 
3 NtQuerySystem-Information 
4 NtAllocate-VirtualMemory 
5 NtOpen-DirectoryObject 
6 NtOpenSymbolic-LinkObject 
7 NtQuerySymbolic-LinkObject 
8 NtClose 
9 NtFsControlFile 

10 NtQueryVolumeInformationFile
… … 

 

To analysis the effect of consecutive words, the n-gram model was applied in our 
corpus. The unigram feature space f = (d, ) was equivalent to the bag-of-words model, 
and the bigram to six-gram feature space were acquired based on the unigram feature 
space. We assembled the consecutive words N from  in F to form n-gram feature set 
FN. Given a word N  FN and a report d  D, we determined the number of occurrences 
of n in d and calculated the frequency fN = (d, N). We derived an extracting function N 
that maps the analysis reports to an |FN|-dimensional vector space by considering the 
frequencies of all words in FN:  

 
N: D  R|F

N
|, N(D)  (f = (d, N))NFN, N=1,6.  (2) 

 
The number and examples of n-gram words were shown in Table 4. 
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Table 4. The number and example of n-gram words. 

n-gram 
Number of 

distinct word 
Sample of Word 

unigram 187 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ... 
bigram 6740 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1 9, 1 10, 1 11, 1 12, 1 13, ... 
trigram 46216 1 1 1, 1 1 2, 1 1 3, 1 1 4, 1 1 5, 1 1 6, 1 1 7, 1 1 8, 1 1 9, 1 1 10, ... 

four-gram 130671 1 1 1 1, 1 1 1 2, 1 1 1 3, 1 1 1 4, 1 1 1 5, 1 1 1 6, 1 1 1 8, 1 1 1 10, ... 
five-gram 242663 1 1 1 1 1, 1 1 1 1 3, 1 1 1 1 4, 1 1 1 1 5, 1 1 1 1 6, 1 1 1 1 10, ... 
six-gram 367211 1 1 1 1 1 1, 1 1 1 1 1 2, 1 1 1 1 1 3, 1 1 1 1 1 4, 1 1 1 1 1 8, ... 

 

3.2 Training and Testing 
 
The n-gram feature space data fN = (d, N) introduced in the previous section can be 

applied in various learning algorithms. SVMs [15] were originally designed for use in 
binary classification. Hsu [16] constructed a multiclass classifier by combining several 
binary classifiers. The training data from the ith and the jth classes in the one-against-one 
method is required to solve the following binary classification problem:  

1
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

   (3) 

where the training data xt are mapped to a high dimensional space by using the kernel 
function , the penalty parameter is C, and the  is the normal vector to the hyperplane. 
If sign (ij)T(xt)+bij indicates it is in the ith class, one is added to the vote for the ith 
class. Otherwise, the jth is increased by one. Regarding the k class label, k(k1)/2 classi-
fiers must be constructed. The kernel is related to the transform (xi) by the equation k(xi, 
xj) = (xt)(xt). 

The SVM effectiveness depends on the kernel selection, the kernel parameters, and 
soft margin parameter C. The Gaussian radial basis function k(xi, xj) = exp(γ||xi  xj||

2) 
was used to maximize the hyperplane margins. The kernel parameters γ and cost param-
eters C must be estimated to yield the optimal prediction. The LIBSVM tool [17], which 
is an established SVM method, was included in the test environment. 

Fig. 1 shows the process of data training and classification. The new tuning γ and C 
values are selected using a grid search, first using exponentially growing sequences, and 
subsequently using a binary search for precision until the accuracy is less than 10-3. 
 

 
Fig. 1. The process of the data training and classification. 
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3.3 Feature Selection Analysis 
 
Learning calculation is extremely time-consuming for high-dimensional datasets. 

The TF-IDF [18] is a numerical statistic that reflects the importance of words in docu-
ment collections or corpuses. Jing [19] used the TF-IDF feature selection method to pro-
cess data resources and establish the vector space model, providing a convenient data 
structure for text categorization. A typical TF-IDF calculation can be expressed as follows: 

 
Wi =TF(i, d)  IDF(i)  (4) 
 

where Wi is the weight of word ωi in document dD, TF(ωi, d) is the term frequency, or 
the number of ωi in d, and 

( ) log( )
( )i

i

D
IDF

DF



  (5) 

where IDF is the inverse document frequency and DF(ωi) represents the appearance of 
ωi in D. The largest value of IDF(ωi) occurs when ωi appears only in one document and 
its effect is particularly substantial. To sort the weighting of ωi with all dD, we nor-
malized the sum of term frequency and modified the TF-IDF model as follows: 

( , )
( ),for all in .

max{ ( , )}
i l

i i

i l

TF d
W IDF l D

TF d
 







  (6) 

To enhance the accuracy of feature selection, we proposed the following MG TF- 
IDF method: 

,

, ,

( , )
,  for all in and  = 1,9.

max{ ( , )}
i l k

i k i k

i l

TF d
W IDF l D k

TF d
 





  (7) 

The Wi,k was calculated by picking the k-family of malware data, using individual-
ized feature selection for each malware family. ∑TF(ωi, dl,k) is sum of the term fre-
quency of ωi in the kth class. IDFi,k is the modified inverse document frequency for the 
kth class: 

'(1 )

, 10 k kIDF IDF

i kIDF     (8) 

where IDF′k = (IDF(ωi)IDF(ωi,k))/(|D||Dk|), indicates that the exceptive proportion of 
ωi in the kth class dataset is as small as possible. IDFk = IDF(ωi,k)/|Dk|, indicates that the 
apparent proportion of ωi in the kth class dataset is as large as possible. 

Fig. 2 shows the feature selection process. Regarding data learning and classifica-
tion using the TF-IDF method, the first m features in the Wi sequence were selected to 
train and classify. The initial γ and C could be chosen from the same values in the feature 
domain training. We can determine the optimal accuracy by increasing m in the test. Re-
garding the MG TF-IDF method, the first m features in the Wi,k sequence for all nine 
families were collected and filtered using the duplicate feature to test. 
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Fig. 2. The process of feature selection. 

 

3.4 Feature Extraction Analysis 
 
Feature extraction is a dimension reduction method that reduces the number of ran-

dom variables being considered. We introduced PCA and KPCA in the feature extraction 
algorithms to reduce the time cost of learning calculation for high-dimensional datasets. 

 
3.4.1 Principal component analysis 
 

The central concept of PCA [20] is reducing the dimensionality of a dataset that 
comprises numerous interrelated variables, retaining as much variation as possible within 
the dataset. This is achieved by transforming to a new set of variables, the principal 
components (PCs), which are uncorrelated and ordered so that the first retain most of the 
variation present in the original variables. Given a dataset comprising m features (α′1, 
α′2, …, α′m), the intent is to transform into a new set of p variables (α1, α2, …, αp) of 
maximal variance. The first step is selecting a linear function α′1ω of the elements of ω 
that exhibits maximal variance, where α′1 is a vector of p constants α11, α12, …, α1p, de-
noting transpose, where 

'

1 11 1 12 2 1 1
1

... .
p

p p j j
j

                 (9) 

Next, a linear function α2ω is determined, which is uncorrelated with α′1ω and ex-
hibits maximal variance, and so on, so that at the mth stage a linear function α′mω exhib-
its a maximal variance subject to being uncorrelated with α′1ω, α′2ω,…, α′m-1ω. To derive 
the form of the PC, first consider α′1ωi; the vector α′1 maximizes α′1ω = α′1∑1α1. To 
maximize α′1∑1α1 subject to α′1α1 = 1, the standard approach is using the Lagrange mul-
tipliers technique, maximizing as follows: 

111  1(11  1) (10) 

where λ1 is a Lagrange multiplier. Differentiation with respect to α1 yields 

11  11 = 0, 11 = 11  (11) 
or 

(1  1Ip )1 = 0, (12) 
 

where Ip is the (p  p) identity matrix. Thus, λ1 is an eigenvalue of ∑1 and α1 is the cor-
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responding eigenvector. ∑1 is the covariance matrix of feature 1,  
 

1

1

1,| | obeservations of documents
,

| |

T

yl ylq
l D

D


  (13) 

where 1 1 1 11 1
( ( ,  ) ( ) /( ) /

D

l l l
y f d y D


     is the standard dataset score value as calculated 

based on the original dataset and σ1 is the standard deviation of 1st feature. The new fea-
ture space dataset g was generated as follows: 

gj = yj, j = 1, p  (14) 

where the λ value could represent the degree of importance of the new vector, and λ1 > λ2 

> λ3> … > λp. 
To locate the principal component of each malware family, we proposed a MG PCA 

method, solving the following problem for each kth family class: 

(k  kIp)k = 0, k = 1, 9.  (15) 

We picked the kth class data from the training dataset and generated the standard 
score value dataset yk. The new transformation vector k and λk were calculated for each 
class. We reorganized the new transformation vector , which was chosen using class- 
by-class selection and the λ sorted value. A new MG feature dataset g was generated 
using gnew = yold. 

Fig. 3 shows PCA feature extraction process; regarding PCA data learning and clas-
sification, the first m features in the new dataset g were selected to train and classify. We 
can determine the optimal accuracy by increasing and testing m. Regarding the MG PCA 
method, the first m features of gk in all nine families were collected for testing. 

 

 
Fig. 3. The process of PCA feature extraction. 

 
3.4.2 Kernel principal component analysis 
 

The KPCA is a non-linear extension of the PCA. [21] Its advantages are nonlinear-
ity of eigenvectors and an increased number of eigenvectors. Karg [22] applied PCA, 
KPCA and linear discriminant analysis to kinematic parameters and analyzed for feature 
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extraction. In PCA, the eigenvalue problem is solved as follows: 

,  where .
Tyy

D
     (16) 

∑ is a covariance matrix. If we nonlinearly map the data into a feature space F by 
using a non-linear map   

: RN  F, y  Y      (17) 

linear PCA is performed in the high-dimensional space F, corresponding to a non-linear 
PCA in the original data space. The covariance matrix is calculated as follows: 

T T
l l

NDC
      .      (18) 

The eigenvalue problem determines Eigenvalues λ ≥ 0 and Eigenvectors VF, sat-
isfying CV = λV, where V = Φ. This yields the following:   

(T) = (T)N (19) 

thus, the Eigenvalue problem becomes 

(K  N) = 0 or K = (N), where K = T. (20) 

The scalar product of Φ can be substituted with a kernel function K. In this study, a 
Gaussian kernel K(xi, xj) = exp(γk||xixj||

2) was used. 
The new feature space dataset g was generated using the following formula: 

, 1,
T
j

j

K

jg j p 

 .      (21) 

Where λ1 > λ2 > λ3 > … > λp and the λ value could represent the degree of im-
portance of the new vector. To focus on finding the principal component of each mal-
ware family, we proposed an MG KPCA method. We solved the problem for each kth 
family class as follows:        

(Kk  Nk) = 0, k = 1, 9.      (22) 

We picked the kth class data from training dataset, generated the standard score 
value dataset yk, and calculated Kk. The γk in Gaussian kernel K must be tuned to yield 
the optimal transformation. The new transformation vectors k and λk were calculated for 
each class. We reorganized the new transformation vector , which was selected class- 
by-class, and by the λ sorted value. The new MG feature dataset g was generated using 
gnew = TK/.  

Fig. 4 shows the KPCA feature extraction process, involving data learning and clas-
sification. The first m features in new dataset g were selected to train and classify. The 
optimal values of γk and m were determined using a grid search method in two loops. 
Regarding the MG KPCA method, the first m features of gk in all nine families were col-
lected to test. 
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Fig. 4. The process of KPCA feature extraction. 

 
3.5 Model Selection and Online Extension 

 
The numbers and instances of features are the major time consumers in online ma-

chine learning. Bordes [23] proposed a novel online algorithm (LASVM) that converged 
SVM solutions. The experimental evidence for diverse datasets indicates that the 
LASVM method reliably reaches competitive accuracy levels after performing a single 
pass of the training set. The effectiveness of LASVM could reduce the execution time by 
30% when regenerating classifiers; the time increased in quadratic complexity (n2-order) 
as the number of features increased. We propose a novel dimension reduction algorithm 
to substantially reduce the number of features used in machine learning. Our two-stage 
dimension reduction algorithm could save more than 99% of execution time during the 
re-training process of high feature spaces. The proposed algorithm is described as fol-
lows: 

f(d, )  F(f(d, ))  f(d, ), y(d, )  G(y(d, ))  g(d, m)   
H(g(d, m))  z(d). (23) 
 
The first stage F(f(d, ω)) involves using the feature select algorithm detailed in Sec-

tion 3.3, where f(d, ω′) is the selected subset of the original dataset and y is the standard 
score value of f. The second stage G(y(d, ω′)) involves using the feature extraction algo-
rithm detailed in Section 3.4, where g(d, m) is the dimension reduction dataset of y and 
H(g(d, m)) is machine learning process that uses the SVM algorithm detailed in Section 
3.2, yielding z(d) as the final prediction of document d to evaluate the accuracy. In prac-
tical online application, the parameters in this process should be adjusted to reduce the 
learning time. The optimal parameters could be determined by using initial offline da-
taset. We used a 40% training dataset and f(d,  ω)→F(f(d, ω))→f(d, ω′)→H(g(d, m))→z(d) 
to determine the optimal feature subset, and then used Equation (4) to calculate the opti-
mal m and γk for feature reduction, γ and C for SVM.  

The online training was simulated by initially collecting 40% of a dataset, and the 
parameters were fixed in the following training and testing. The classifier was rebuilt to 
accumulate 50% to 90% of the data in increments of 10% and tested for the subsequently 
incoming 10% of the dataset. 
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4. EXPERIMENT 

We collected 4,288 documents from nine family classes of malware samples, as de-
scribed in Section 3.1. Cross validation was used to identify effective parameters, allow-
ing the classifier to accurately predict unknown data and prevent overfitting. [18] In v- 
fold cross-validation, the training set is divided into v subsets of equal size. Sequentially 
one subset is tested using the classifier trained on the remaining v1 subsets. This is 
called the holdout method if v = 2. We used three-part cross validation, modifying the 
v-fold cross-validation to yield an estimate. We generated 10-fold data subsets: four sub- 
sets were the training set, one subset was the estimate set used for optimal parameter 
tuning, and the remaining five subsets were used in independent testing. Total 10 runs 
were tested by random combination of 10-fold subsets data. A confusion matrix is a spe-
cific table layout that displays the performance level of a classification system; thus, a 
confusion matrix table was generated and the accuracy was evaluated for each estimated 
subset and testing subset. 
 
4.1 Behavior Monitoring and Data Preprocessing 

 
In the first experiment, we examined the general classification performance level of 

the proposed malware behavior classifier. The learning and classification methods de-
scribed in Section 3.2 were used to analyze a unigram to six-gram dataset. Various 
methods were used to evaluate our retrieval system. Table 5 lists the result of families for 
the first-fold SVM test, using unigram, where TP no. = the number of true positives, FN 
no. = the number of false negatives, FP no. = the number of false positives, TN no. = the 
number of true negatives, accuracy A = (TP + TN)/(TP + FN + FP + TN), precision 
(Sensitivity) P = TP/(TP + FP), recall R = TP/(TP + FN), specificity S = TN/(TN + FP), 
negative predictive value N = TN/(TN + FN), and F-measure F = 2PR/(P + R). 

Table 5. Various measures result of families by 1st run SVM test for unigram. 
Label TP no. FN no. FP no. TN no. A P R S N F 

1 184 16 33 1936 0.98 0.85 0.92 0.98 0.99 0.88 
2 26 20 12 2111 0.99 0.68 0.57 0.99 0.99 0.62 
3 87 11 12 2059 0.99 0.88 0.89 0.99 0.99 0.88 
4 123 55 27 1964 0.96 0.82 0.69 0.99 0.97 0.75 
5 50 16 23 2080 0.98 0.68 0.76 0.99 0.99 0.72 
6 642 90 126 1311 0.9 0.84 0.88 0.91 0.94 0.86 
7 57 51 34 2027 0.96 0.63 0.53 0.98 0.98 0.57 
8 489 43 44 1593 0.96 0.92 0.92 0.97 0.97 0.92 
9 183 26 17 1943 0.98 0.92 0.88 0.99 0.99 0.89 

 
Table 6 lists the results of the 10-run SVM test for the unigram dataset, where 
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Table 6. The further measures result of families by 10-run SVM test for unigram. 

nth Run Micro P Micro R Micro S Micro N
Macro 

Precision
Macro 
Recall 

Macro F 

1 0.8488 0.8488 0.9811 0.9811 0.8012 0.7801 0.7885 
2 0.8418 0.8418 0.9802 0.9802 0.7784 0.7634 0.7693 
3 0.8387 0.8387 0.9798 0.9798 0.7908 0.7866 0.7847 
4 0.8413 0.8413 0.9802 0.9802 0.7856 0.7678 0.7743 
5 0.8559 0.8559 0.9820 0.9820 0.7944 0.8047 0.7953 
6 0.8583 0.8583 0.9823 0.9823 0.7827 0.7802 0.7803 
7 0.835 0.835 0.9794 0.9794 0.7961 0.758 0.7703 
8 0.8506 0.8506 0.9813 0.9813 0.8127 0.7888 0.7988 
9 0.8555 0.8555 0.9819 0.9819 0.8152 0.8029 0.808 

10 0.8398 0.8398 0.9800 0.9800 0.8033 0.7525 0.7744 
average 0.8466 0.8466 0.9808 0.9808 0.796 0.7785 0.7844 

 

The microprecision and micro recall values were the same for the multiclass classi-
fication, and the microspecificity and micronegative predictive values were the same. We 
observed that all of the micronegative predictive values were higher than 97.9%. The 
results revealed a satisfactory prediction for the negative predictive value. Therefore, the 
experiments focused on overall true positives; in other words, the microprecision (and 
recall) measure was used for assessing accuracy and optimizing the parameters. Figs. 5  

    
(a) Recall                           (b) Negative predictive value 

Fig. 5. The confusion result of families for unigram 1strun classify (C = 500, γ = 0.00000093). 
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and 6 show the confusion matrix results and micro measures results of the families in the 
first-run SVM test for unigram. The matrix diagonal corresponds to the recall value of 
each class, and the total accuracy was the micro recall value. 
 

   
(a) Microprecision (= micro recall)              (b) Micronegative predictive value  

Fig. 6. The micro measures result of each family for unigram classify (C = 500, γ = 0.00000093). 
 

  
(a) Average microprecision w.r.t. N-gram.             (b) Time cost w.r.t N-gram. 

Fig. 7. The microprecision and the time cost of n-gram experiments. 
 

Fig. 7 shows the average microprecision of the used feature numbers and the corre-
sponding time costs of the n-gram experiments. The average values comprised the results 
of the 10-run experiment. In Fig. 7 (a), the microprecision gradually increased from the 
unigram to the four-gram experiment, inconspicuously increasing in the five-gram and 
six-gram experiments; thus, numerous features in the increased five-gram and six-gram 
experiments were redundant and ineffective. By contrast, in Fig. 7 (b), the time cost con-
tinually increased as the size of the feature dimension increased. The time costs of these 
experiments failed to meet the requirements of online machine learning. 

 
4.2 Feature Selection Analysis 

 
In the first experiment, we determined that the time cost of a machine depended on 
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the feature dimension size and most features might be redundant and ineffective. Dimen-
sion reduction attempts to reduce the time cost of machine learning. In this experiment, 
we selected the feature subsets of data by using various selection methods, conducting 
learning and classification testing as described in Section 3.2. Fig. 8 shows the results of 
the TF-IDF feature selection method (Section 3.3) as compared with those of the random 
selection method. The MG TF-IDF feature selection method uses the smallest number of  

 

 
(a) Unigram                               (b) Bigram 

 
(c) Trigram                              (d) Four-gram 

 
(e) Five-gram                        (f) Six-gram  

Fig. 8. The microprecision results of diverse feature selection methods. 
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features, attaining similar microprecision levels; thus, the MG TF-IDF method precisely 
selects the effective features of individual malware families and is superior to the TF- 
IDF feature selection method, substantially reducing the required feature dimension, par-
ticularly in the proposed MG TF-IDF method, whereby 100-1000 selected features were 
sufficient to maintain equivalent micro precision. Reducing the feature dimension to less 
than 1% would allow time cost savings of 99% in high dimensional feature spaces. 

As shown in Fig. 8, we observed that the accuracy of four-gram, five-gram, and six- 
gram MG TF-IDF methods exhibited a similar tendency of increasing to nearly the same 
final best accuracy.  

The MG TF-IDF method effectively selected the major behaviors of each malware 
family in the unigram test. Table 7 lists the first 10 major words of unigram selected by 
MG TF-IDF method for malware families.  

 
Table 7. The first 10 selected words of malware families by MG TF-IDF method in uni-

gram test. 
 Adware Virus/Exploit Dialer 
1 NtOpenKey NtClose NtWriteFile 
2 NtClose NtOpenKey NtReadFile 
3 NtQueryValueKey NtQueryValueKey NtClose 
4 NtDelayExecution NtSetValueKey NtQueryValueKey 
5 NtQueryKey NtCreateKey NtOpenKey 
6 NtWaitForSingleObject NtAllocateVirtualMemory NtAllocateVirtualMemory 
7 NtQueryInformationToken NtMapViewOfSection NtWaitForSingleObject 
8 NtOpenThreadTokenEx NtQueryAttributesFile NtMapViewOfSection 
9 NtOpenProcessTokenEx NtProtectVirtualMemory NtQueryAttributesFile 

10 NtQueryInformationProcess NtReadVirtualMemory NtRequestWaitReplyPort 
 Heuristic Suspect.Trojan Trojan 
1 NtClose NtClose NtClose 
2 NtOpenKey NtOpenKey NtQueryAttributesFile 
3 NtQueryValueKey NtQueryValueKey NtOpenKey 
4 NtQueryVirtualMemory NtMapViewOfSection NtDelayExecution 
5 NtOpenFile NtReadVirtualMemory NtQueryDirectoryFile 
6 NtQueryInformationProcess NtUnmapViewOfSection NtYieldExecution 
7 NtQueryDirectoryFile NtQueryKey NtQueryValueKey 
8 NtQueryInformationToken NtWaitForSingleObject NtOpenFile 
9 NtAllocateVirtualMemory NtClearEvent NtQueryInformationProcess

10 NtMapViewOfSection NtQueryInformationToken NtMapViewOfSection 
 W32 Worm Non-Malware 
1 NtClose NtClose NtClose 
2 NtOpenKey NtDelayExecution NtOpenKey 
3 NtQueryValueKey NtAllocateVirtualMemory NtQueryValueKey 
4 NtMapViewOfSection NtWaitForSingleObject NtWaitForSingleObject 
5 NtReadVirtualMemory NtOpenKey NtQueryInformationToken 
6 NtQueryAttributesFile NtCreateEvent NtAllocateVirtualMemory 
7 NtUnmapViewOfSection NtDeviceIoControlFile NtReleaseMutant 
8 NtAllocateVirtualMemory NtQueryValueKey NtMapViewOfSection 
9 NtOpenThreadTokenEx NtRequestWaitReplyPort NtQueryDefaultLocale 

10 NtOpenProcessTokenEx NtResumeThread NtEnumerateValueKey 
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In addition to the common function, we observed the following: 
 

 The behaviors of peeping user preferences of operation appear in the Adware family. 
(e.g. Query Key Value, Query Information) 

 The behaviors of installing and launching program by weaknesses of service appear in 
the Virus/Exploit family. (e.g. SetValueKey, CreateKey, AllocateVirtualMemory) 

 The behaviors of sending information or files appear in the Dialer family. (e.g. Read/ 
Write File, WaitForSingleObject, RequestWaitReplyPort) 

 The behaviors of evading the detection of antivirus system appear in the Heuristic fam-
ily. (e.g. QueryVirtualMemory, QueryInformationProcess, QueryDirectoryFile) 

 The behaviors of loading the software into memory appear in the Suspect.Trojan fami-
ly, e.g. MapViewOfSection, ReadVirtualMemory, UnmapViewOfSection. 

 The behaviors of launching the task and querying information of files appear in the 
Trojan family. (e.g. QueryAttributesFile, DelayExecution, QueryDirectoryFile, Yield- 
Execution) 

 The behaviors of slowing down the operation of the windows system appear in the 
W32 family. (e.g. QueryValueKey, ReadVirtualMemory, NtOpenThreadTokenEx, Nt- 
Open-ProcessTokenEx) 

 The behaviors of continuously copying files, installing and executing softwares appear 
in the Worm family. (e.g. DelayExecution, CreateEvent, DeviceIoControlFile, Request- 
WaitReplyPort, ResumeThread) 

 The less maliciou behaviors appear in the Non-Malware family. (e.g. no CreateThread, 
CreateKey, Read/Write File, AllocateVirtualMemory, DelayExecution) 

 
Table A (Appendix A) lists the first 10 major words of further grams that were se-

lected using the MG TF-IDF method for Dialer malware and four-gram tests of Non- 
malware. A spyware dialer is a malicious program that attempts to create a connection to 
the Internet or another computer network over the analog telephone, modem, or Inte-
grated Services Digital Network (ISDN) by using WinAPIs. We observed that a serial of 
NtWriteFile/NtReadFile words were selected in bi-, tri-, and four-gram test, convinced 
the major behaviors of a spyware dialer. Besides, we observed that most behaviors in the 
non-malware were key related operation, were significant differences with malware fam-
ilies.  

Fig. 9 shows the results of the MG TF-IDF feature selection method from unigram 
to six-gram. We observed that a high gram yielded favorable accuracy with sufficient 
words (approximately 1000). If the number of selected features was low (e.g., 10), the 
accuracy of a high gram was relatively poor. The number of combinations for front 
ranking function in a high gram was high and accompanied by a low probability. A large 
number of features caused over-training and resulted in no increase or decrease of test 
accuracy. In general, the four-gram model demonstrated optimal performance regarding 
the final accuracy compared with the five-gram model and high gram, and was sufficient 
for representing the research results of using the most effective selection and parameter 
tuning method. Besides, five-gram had a 4288242663 big dataset, maybe need to test in 
Hadoop platform to solve the resource problem. Considering a large amount of memory 
and an exponential increase in the time cost of a high gram compared with that of the 
four-gram model, we focused on investigating unigram to four-gram models in practice.  
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Fig. 9. The microprecision results of diverse grams of MG TF-IDF feature selection. 

 

4.3 Feature Extraction Analysis 
 
Feature selection is a dimension reduction method that reduces the original mass 

features. In this experiment, we converted the original feature data into new reduced 
feature space data by using the feature extraction methods described in Section 3.4, con-
ducting learning and classification testing as described in Section 3.2.  

The PCA and MG PCA method were used to extract the major behaviors of mal-
ware effectively to form few representative components. Table 8 lists the highest five 
principal component score weightings and the combination of latent functions extracted 
using the PCA method in the unigram test. 

 
Table 8. The highest five principal component score weightings and the combination of 

latent functions extracted using the PCA method in the unigram test. 
 principal component score weighting 

1st 0.242798  
2nd 0.181731  
3rd 0.126186  
4th 0.068949  
5th 0.062883  

1st principal component 2nd principal component  
Behavior function   Percent contribution     Behavior function    Percent contribution 

NtClose 44.17 NtQueryAttributesFile  25.93 
NtQueryAttributesFile 14.61 NtReadFile   24.86 

NtOpenKey 14.28 NtClose    19.95 
NtQueryValueKey  6.01 NtWriteFile   14.27 
NtDelayExecution  4.65 NtDelayExecution   10.14 

NtOpenFile  3.47 NtOpenFile    6.30 
NtQueryInformationProcess  2.29 NtQueryVirtualMemory   6.21 
NtAllocateVirtualMemory  2.21 NtQueryInformationProcess  3.73 

NtQueryDirectoryFile  2.04 NtReadVirtualMemory   3.70 
NtMapViewOfSection 1.35     NtQueryDirectoryFile       3.51 
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Fig. 10. The microprecision results of diverse feature extraction methods. 

We observed the increased operation of the registry key and memory in the first 
principal component, and the increased operation of files in the second principal compo-
nent, corresponding to the generic cognition of virus attack characteristics. 

Table B (Appendix B) lists the first principal component score weighting and the 
combination of latent functions extracted using the MG PCA method for malware fami-
lies. The front ranking functions of each family were approaching to the MG TF-IDF 
observations shown in Table 7. 

Table C (Appendix C) lists the first principal component and the combination of la-
tent functions for additional grams that were selected using the MG KPCA method for 
Dialer malware. 

Fig. 10 shows the results of PCA and KPCA as compared with other feature extrac-
tion methods. MG KPCA demonstrated a substantial improvement in prediction accuracy. 
As Kung [31] mentioned, the kernel approach dealt with the relationship and similarity 
between training set and test set, the bigram test of MG KPCA method demonstrated a 
substantial improvement (approximate 95% accuracy) in prediction accuracy. When the 
number of transformed features was small, the MG KPCA method achieved greater mi-
croprecision than did the other feature reduction methods. As few as 10-30 transformed 
features (i.e., 1-3 PCs selected from each malware group) could sufficiently represent in- 
dividual characteristics, generating an accurate classification. By contrast, increasing the 
number of transformed features yielded overfitting and reduced the microprecision levels. 

 

 
 (a) Unigram                            (b) Bigram 

 
   (c) Trigram                            d) Four-gram 
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Although the PCA and KPCA methods can minimize the time cost of the learning 
and classification processes, it increases the time cost of the feature extraction process. 
Table 9 shows the time cost for each estimate method. Compared with the training time 
for the bag-of-words dataset and PCA methods, the MG PCA method reduced the time 
cost by approximately 25%. The KPCA and MG KPCA methods doubled the time cost; 
thus, the PCA and MG PCA methods were the most effective at reducing the time cost of 
online training. 

 

Table 9. The time cost (seconds) of 40% dataset training for various procedure. 
 unigram bigram trigram four-gram 
 F.E. SVM Total F.E. SVM Total F.E. SVM Total F.E. SVM Total 

Bag of word  5.5 5.5  147 147  942 942  3074 3074 
PCA 0.6 1.7 2.3 32 1.7 34 126 2 128 469 1.7 471 

MG PCA 1.1 5.3 6.4 175 6.1 181 237 4.6 242 678 3.2 681 
KPCA 46 1.9 48 458 3 461 2849 3.1 2852 6356 1.8 6358 

MG KPCA 33 2.1 35 312 1.5 314 2452 1.4 2453 5971 1.7 5973 
(Test environment: Quard-Core AMD Opteron(tm) Processor 2384, CPU: 800MHz) 
(F.E.: The Process of Feature Extraction.) 

 

4.4 Model Selection and Online Extension 
 
Feature selection and extraction were verified to reduce time cost. In this experi-

ment, we combined these methods, forming a two-stage dimension reduction method as 
described in Section 3.5, and conducting learning and classification testing as described 
in Section 3.2. Online learning was simulated in accumulating 50% to 90% of the data in 
increments of 10% to train and collected the subsequently incoming 10% of the dataset 
to test.  

The first online simulation experiment was comparing the effectiveness between all 
feature selection and MG TF-IDF feature selected methods. Fig. 11 shows the micropre-
cision level and time cost results; the prediction microprecision value of both methods 
were highly approaching, however, MG TF-IDF methods saved increasingly more time 
as the n-gram number increased.  

 
(a) Unigram                                (b) Bigram 

Fig. 11. The microprecision level and time cost results of various combination methods. 
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(c) Trigram                             (d) Four-gram 

Fig. 11. (Cont’d) The microprecision level and time cost results of various combination methods. 
 

To decrease the time cost, we combined the MG TF-IDF and feature extraction 
methods, forming a two-stage feature reduction method. Table 10 lists the selected and 
extracted feature numbers in the experiment. 

 

Table 10. The number of selected features and extracted feature of various experiment. 
 unigram bigram trigram four-gram 
 (1) (2) (1) (2) (1) (2) (1) (2) 

MG TF-IDF + PCA 60 50 1000 50 1000 50 1000 50 
MG TF-IDF + MG PCA 60 50 1000 100 1000 100 1000 100 

MG TF-IDF + KPCA 60 50 1000 50 1000 50 1000 50 
MG TF-IDF + MG KPCA 60 100 1000 100 1000 100 1000 100 
(1: no. of selected feature, 2: no. of extracted feature) 

 
Fig. 12 shows the microprecision results of the online training simulation, using 

various combined methods. With the more data collected, the accuracy had gradually 
increased. In the bigram to four-gram online simulations, the trends and value of predic-
tion microprecision were highly approaching to the whole selecting features test. The 
accuracy of our feature selection and reduction approach continued to fit the perfor-
mance as original whole dataset test. 

 

  
(a) Unigram                               (b) Bigram 

Fig. 12. The microprecision results of various combination methods in online simulation. 
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(c) Trigram                             (d) Four-gram 

Fig. 12. (Cont’d) The microprecision results of various combination methods in online simulation. 

 

 
(a) Unigram                              (b) Bigram 

  
(c) Trigram                               (d) Four-gram 

Fig. 13. The total time cost results of the online training simulation. 
 

Regarding the time cost analysis, Fig. 13 shows the total time cost results of the on- 
line training simulation, using various combined methods. The MG TF-IDF selection 
algorithm combined with the PCA or MG PCA extraction algorithms yielded the mini-
mal time cost. The accuracy of our feature selection and reduction approach continued to 
fit the performance as original whole dataset test. The execute time of the rebuilding the 
classifier was below 10s, the findings show that the proposed algorithm significantly 
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reduces the time cost and meets the online learning requirement of collecting malware 
behavior every minute. 

5. CONCLUSIONS 

Using high-dimensional n-gramor mapping data space can enhance classification 
predictions; however, such enhancements cost excessive computing time. The primary 
contribution of this study is the proposed two-stage feature reduction method, which 
substantially reduces the time cost of classifying malware behavior by using automatic 
online learning. The key components of the proposed approach comprise (a) using the 
MG TF-IDF feature selection method to precisely select the effective features of data 
subsets in the first stage; (b) using PCA or KPCA to convert the original feature space to 
a low PC feature space in the second stage; (c) automatically tuning the learning and 
classification by using learning algorithms; and (d) combining feature selection and ex-
traction with learning and classification, and applying these methods to online detection. 
The malware behavior log data were collected from a sandbox environment based on 
hardware virtualization technology. The proposed system executed and recorded 4,288 
samples from nine malware families. The dimensionality reduction, TF-IDF, PCA, and 
KPCA methods were analyzed to reduce the time cost of classification. Furthermore, we 
proposed an MG algorithm for each feature of the reduction method; the findings 
showed the effectiveness of its feature reduction. Moreover, we evaluated our method by 
using an online training simulation experiment. Our two-stage dimensionality reduction 
approach substantially reduced time costs. Combining the MG TF-IDF, PCA, and SVM 
methods for online training allows the re-training and classifying procedures to be com-
pleted in few seconds, meeting the online learning requirements for collecting malware 
behavior every minute. The proposed sandbox test environment uses a similar concept as 
hypervisor architecture that is easily applied to cloud environments. The propose ap-
proach offers a competitive malware detection procedure. 

APPENDIX A  

Table A. The first 10 words of Dialer malware selected using the MG TF-IDF method 
from the bigram to four-gram tests and four-gram tests of Non-malware. 

 bigram  trigram  
1 NtWriteFile, NtReadFile NtWriteFile, NtReadFile, NtWriteFile  

2 NtReadFile, NtWriteFile NtReadFile, NtWriteFile, NtReadFile  

3 NtQueryValueKey, NtQueryValueKey NtQueryValueKey, NtQueryValueKey, NtQueryValueKey  

4 NtOpenKey, NtOpenKey NtWriteFile, NtWriteFile, NtWriteFile  

5 NtOpenKey, NtQueryValueKey NtOpenKey, NtQueryValueKey, NtClose  

6 NtWriteFile, NtWriteFile NtQueryInformationToken, NtClose, NtOpenKey  

7 NtClose, NtOpenKey NtOpenProcessTokenEx, NtQueryInformationToken, NtClose  

8 NtQueryValueKey, NtClose NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken  

9 NtClose, NtClose NtClose, NtOpenKey, NtQueryValueKey  

10 NtFsControlFile, NtWait-

ForSingleObject 

NtWaitForSingleObject, NtFsControlFile, NtWait-

ForSingleObject  
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 four-gram tests of Dialer malware  
1 NtReadFile, NtWriteFile, NtReadFile, NtWriteFile  

2 NtWriteFile, NtReadFile, NtWriteFile, NtReadFile  

3 NtQueryValueKey, NtQueryValueKey, NtQueryValueKey, NtQueryValueKey  

4 NtWriteFile, NtWriteFile, NtWriteFile, NtWriteFile  

5 NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken, NtClose  

6 NtOpenProcessTokenEx, NtQueryInformationToken, NtClose, NtOpenKey  

7 NtReadFile, NtReadFile, NtReadFile, NtReadFile  

8 NtFsControlFile, NtWaitForSingleObject, NtFsControlFile, NtWaitForSingleObject  

9 NtDelayExecution, NtRequestWaitReplyPort, NtDelayExecution, NtRequestWaitReplyPort  

10 NtRequestWaitReplyPort, NtDelayExecution, NtRequestWaitReplyPort, NtDelayExecution  

 four-gram tests of Non-malware  
1 NtEnumerateValueKey, NtEnumerateValueKey, NtEnumerateValueKey, NtEnumerateValueKey  

2 NtQueryValueKey, NtQueryValueKey, NtQueryValueKey, NtQueryValueKey  

3 NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken, NtClose  

4 NtOpenProcessTokenEx, NtQueryInformationToken, NtClose, NtOpenKey  

5 NtDuplicateObject, NtQueryValueKey, NtQueryValueKey, NtClose  

6 NtQueryKey, NtDuplicateObject, NtQueryValueKey, NtQueryValueKey  

7 NtEnumerateKey, NtOpenKey, NtEnumerateKey, NtOpenKey  

8 NtClose, NtClose, NtQueryKey, NtDuplicateObject  

9 NtOpenKey, NtEnumerateKey, NtOpenKey, NtEnumerateKey  

10 NtClose, NtQueryKey, NtDuplicateObject, NtQueryValueKey  

APPENDIX B  

Table B. The first principal component (PC) score weighting and the combination of 
latent functions extracted using the MG PCA method for malware families. 

Malware family PC score 
weighting 

Malware family PC score 
weighting 

Adware 1st PC 0.835169 Virus/Exploit 1st PC 0.677811 
Dialer 1st PC 0.980597 Heuristic 1st PC 0.282665 

Suspect.Trojan 1st PC 0.499817 Trojan 1st PC 0.363542 
W32 1st PC 0.478477 Worm 1st PC 0.433603 

Non-Malware 1st PC 0.552503   
Adware 1st principal component Virus/Exploit 1st principal component  

function contribution  function contribution 
NtOpenKey  36.67 NtClose  72.40 

NtClose   32.34 NtOpenKey  11.07 
NtQueryValueKey  11.64 NtQueryValueKey  9.52 

NtQueryKey   3.26 NtSetValueKey   2.74 
NtDelayExecution   3.15 NtCreateKey   2.39 
Dialer 1st principal component Heuristic 1st principal component  

function contribution  function contribution 
NtReadFile   84.56 NtClose   31.71 
NtWriteFile   33.37 NtOpenKey   27.15 

NtRequestWaitReplyPort   1.27  NtQueryVirtualMemory 19.89  
NtQueryVirtualMemory   0.66 NtQueryValueKey  11.80 
NtEnumerateValueKey   0.52 NtContinue    1.63 
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Suspect.Trojan 1st principal component Trojan 1st principal component  
function contribution  function contribution 

NtOpenKey   29.16 NtQueryAttributesFile 33.80  
NtClose   20.98 NtClose   29.26 

NtQueryValueKey  13.47 NtReadFile   16.07 
NtMapViewOfSection  10.27 NtOpenKey    7.97 

NtUnmapViewOfSection   5.88 NtDelayExecution   6.92 

W32 1st principal component Worm 1st principal component  
function contribution  function contribution 
NtClose   39.68 NtClose    61.23 

NtOpenKey   25.29 NtAllocateVirtualMemory 12.46 
NtQueryValueKey  15.83 NtWaitForSingleObject  3.46 

NtWriteFile    4.38 NtDeviceIoControlFile  3.27 
NtWaitForSingleObject   2.43 NtDelayExecution   3.19 

Non-Malware 1st principal component  
function contribution   
NtClose    40.74   

NtOpenKey   21.79   
NtQueryValueKey   20.91   

NtWaitForSingleObject   2.23   
NtQueryInformationToken   2.23   

APPENDIX C  

Table C. The first principal component (PC) score weighting (SW) and the combination 
of the highest 10 latent functions extracted using the MG PCA method for 
Dialer malware in bigram to four-gram tests. 

Bigram 1st PC SW= 0.991028 Trigram 1st PC SW= 0.993501 
 Functions Contribution Functions  Contribution 

1 NtWriteFile, NtReadFile 39.34 NtQueryValueKey, NtQueryValueKey, 
NtQueryValueKey

24.38 

2 NtQueryValueKey, NtQueryValueKey 10.69 NtReadFile, NtWriteFile, NtReadFile 15.66 

3 NtOpenKey, NtOpenKey  8.97 NtWriteFile, NtReadFile, NtWriteFile 14.33 

4 NtClose, NtOpenKey  6.23 NtOpenKey, NtQueryValueKey, NtClose  4.91 

5 NtOpenKey, NtQueryValueKey  5.32 NtWriteFile, NtWriteFile, NtWriteFile  4.08 

6 NtWriteFile, NtWriteFile  4.93 NtClose, NtOpenKey, NtQueryValueKey  2.55 

7 NtQueryValueKey, NtClose  4.70 NtQueryInformationToken, NtClose, NtOpenKey  2.30 

8 NtReadFile, NtWriteFile  2.88 NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken  2.21 

9 NtFsControlFile, NtWaitForSingleObject  2.21 NtOpenProcessTokenEx, NtQueryInformationToken, NtClose  2.21 

10 NtQueryInformationToken, NtClose  2.16 NtWaitForSingleObject, NtFsControlFile, 
NtWaitForSingleObject 

 1.91 

 four-gram 1st PC SW= 0.994641  
 Functions   Contribution 
1 NtQueryValueKey, NtQueryValueKey, NtQueryValueKey, NtQueryValueKey 27.11 

2 NtWriteFile, NtReadFile, NtWriteFile, NtReadFile 12.85 

3 NtReadFile, NtWriteFile, NtReadFile, NtWriteFile 10.61 

4 NtWriteFile, NtWriteFile, NtWriteFile, NtWriteFile  5.10 

5 NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken, NtClose  4.14 

6 NtOpenProcessTokenEx, NtQueryInformationToken, NtClose, NtOpenKey  4.11 

7 NtFsControlFile, NtWaitForSingleObject, NtFsControlFile, NtWaitForSingleObject  2.64 

8 NtQueryKey, NtOpenThreadTokenEx, NtOpenProcessTokenEx, NtQueryInformationToken  2.00 
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9 NtReadFile, NtReadFile, NtReadFile, NtReadFile  1.85 

10 NtWaitForSingleObject, NtFsControlFile, NtWaitForSingleObject, NtFsControlFile  1.55 
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