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Abstract—Malware family identification is a complex process 
involving extraction of distinctive characteristics from a set of 
malware samples. Malware authors employ various techniques to 
prevent the identification of unique characteristics of their 
programs, such as, encryption and obfuscation. In this paper, we 
present n-gram based sequential features extracted from content 
of the files. N-grams are extracted from files; sequential n-gram 
patterns are determined; pattern statistics are calculated and 
reduced by the sequential floating forward selection method; and 
a classifier is used to determine the family of malware. Three 
classification models: C4.5, multilayer perceptron, and support 
vector machine are studied. Experimental results on a standard 
malware test collection show that the proposed method performs 
well, with the classification accuracy of 96.64%. 
 
Keywords—Malware Classification, N-Gram, Sequential Pattern, 
Sequential Floating Forward Selection, C4.5, Multilayer 
Perceptron, Support Vector Machine. 

I. INTRODUCTION  
Development of malware poses a major threat to modern 

information technology. A common method of launching 
computer attacks is by means of malware such as backdoors, 
Trojan horses, viruses and worms, which can cause severe 
damages to security and privacy of computer systems and 
networks worldwide. Malware has evolved into a powerful 
instrument for illegal commercial activities, and a significant 
effort is made by its authors to thwart detection by anti-
malware products. 

General analysis techniques for detecting malware are 
commonly classified into dynamic and static approaches. In 
dynamic analysis (also known as behavioral analysis),   
detection of malware relies on information that is collected 
from the operating system at runtime (i.e., during the execution 
of the program) such as system calls, network access and files 
[1]. This approach has several disadvantages. First, it is 
difficult to simulate appropriate conditions for malicious 
functions of a program, such as the vulnerable applications that 
the malware will be activated. Secondly, it is not clear what the 
required period of time is needed to observe the appearance of 
the malicious activity of a program. In static analysis, 
information about a program or its expected behaviors employs 
explicit and implicit observations in its binary code. The main 
advantage of static analysis is its ability to examine a suspected 

file without actually executing it and thereby provides rapid 
classification [2]. 

Our goal in this research is to introduce a novel set of 
features for effective classification of malware families. The 
features are based on n-gram sequential patterns, extracted 
from disassembling files. Three classification models are 
explored with the proposed features which consist of C4.5, 
multilayer perceptron, and support vector machine. 
Experimental evaluations on a standard malware data 
collection are performed to evaluate the proposed technique.  

II. RELATED WORK 
Several techniques have been studied in the past for malware 

detection. Cohen [23], Chess and White [24] use sandboxing to 
detect viruses. They show that in general the problem of virus 
detection is undecidable. Christodorescu and Jha [25] detect 
malicious code in executable files. Their implementation, 
called SAFE, handles most common types of obfuscations used 
by malware writers, such as insertion of NOPs between 
instructions, to evade detection.  

In [33], Christodorescu et al. exploit semantic heuristics to 
detect obfuscated malware. Although, their approach works 
well for obfuscated malicious programs, the time taken (over a 
minute to classify) by their approach makes it impractical for 
use in commercial antivirus scanners. Kruegel et al [26] use 
control flow graph information and statistical methods for 
disassembling obfuscated executables. Bergeron et al. [27] 
consider critical API calls and security policies to test for 
presence of malicious code. Their approach does not work for 
obfuscated malicious executables. Zhang et al. [28] use fuzzy 
pattern recognition to detect unknown malicious code. The 
approach does not handle obfuscated program binaries and 
gives many false positives. Martignoni et al. [30] use real-time 
program monitoring to detect obfuscation in memory. Their 
implementation OmniUnpack detects obfuscation for both 
known and unknown packers. Zhang [31] identifies patterns of 
system or library functions called by a malware sample to 
detect their metamorphic versions. Bilar [29] uses statistical 
structures such as opcode frequency distribution and graph 
structure fingerprints to detect malicious programs.  

An approach to represent malware content is the use of n-
grams which are substrings of a larger string with length n. N-
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grams exist in constant malware parts although obfuscation 
techniques are used. These obfuscations are considered part of 
a file. Representations of malware by using n-gram profiles 
have been presented in the literature, see for example [32], [3] 
and [5]. In these studies some promising results towards 
malware detection are presented. However, malware domain 
has been evolving due to survivability requirements. Malware 
has to evade anti-virus scanners to perform its functions. 
Obfuscation techniques have been developed in order to avoid 
detection by anti-virus scanners. And these techniques affect n-
gram features in the binary form of malware used by previous 
work. Similar methodologies have been used in source 
authorship, information retrieval, and natural language 
processing [34], [35]. Abou-Assaleh et al. [3] contribute to the 
ongoing research while using common n-gram profiles. The K 
nearest neighbor algorithm with k=1 is used. A feature set is 
constituted by using the n-grams and the occurrence frequency. 
Tests have been done with different values of n (ranging from 
1 to 10) and frequencies (ranging from 20 to 5000). The data 
set used in these experiments comprises 25 malware and 40 
benign files. The test results show 98% of success. Using the 
data in [3], the accuracy slightly drops to around 94%. Kolter et 
al. [5] use 4-grams as features and select top 500 n-grams 
through information gain measure. They use instance based 
learners, TF-IDF, naïve Bayes, support vector machines, and 
decision trees and also boost the last three learners. The 
boosted decision tree outperforms all other and gives promising 
results, such as ROC curve of 0.996. Walenstein et al. [9] 
explore the use of n-grams and unordered n-perms to 
disassembly. This has the benefit of using features from 
specific malware, however, because all n-perms of a file are 
considered, there is no opportunity to select those features that 
may distinguish a family in question from other similarly 
constructed files. 

 

 

Figure 1. Architecture of the proposed method. 

III. METHODOLOGY  
In this section, the malware detection process, as shown in 
Figure 1, is described. 

A. FeaturesExtraction 
Features are created in 4 major steps: n-gram extraction, 

sequential pattern extraction, pattern statistics calculation, and 
feature reduction.    

1) N-grams extraction 
An n-gram is an n-character slice of a longer string. First, 

IDA-Pro [11], a tool that disassembler files, is used to extract 
content of a file into a long string of hexadecimals. The string 
is then processed into a set of overlapping n-grams. In our 
study, we explore n-grams of several different lengths. The 
kfngram tool [18] is employed to generate n-gram slices. In the 
experiments our tests are run with n=1, n=2, n=3 and n=4. The 
resulting n-gram-malware matrix is shown in Figure 2.  

2) Sequential pattern extraction 
There are a very large number of n-grams, but there is no 

order information. Sequential pattern extraction [19] is 
employed to find the frequently occurred sequences to describe 
the data. We implemented the techniques according to [12,13] 
which can reduce response time to find patterns in sequence 
data. 

After processing a malware into n-grams, malware m can be 
represented by a set of malware file F(m).  

 

 

Figure 2. N-gram-malware matrix. 

   Let  1 2{ , ,..., }mT t t t=  be a set of terms (n-grams) which 
are resulted from n-gram extraction. Given X be a set of terms 
(termset) in malware m, coverset(X) denotes the covering set of 
X for m, which includes all malware file ( )mw F m∈  , where 
X mw⊆ , i.e., ( ) { | ( ), }mw mcoverset w F m X mwX = ∈ ⊆ , the 
absolute support of X is the number of occurrences of X in 

( )( )( ) : | |aF sup X covm erset X=  , the relative support of X is 
the fraction of the malware file that contain the pattern: 

( )( ) | | / | ( ) |asup X coverset X F m= . The relationships between 
frequent patterns and covering sets are shown in Figure 3. A 
termset X called frequent pattern if its  _asup min sup≥ , a 
minimum support. 
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Figure 3. Frequent patterns and covering sets. 

   A sequential pattern is an ordered list of terms, where its 

1,..., : ( )r iS t t t T=< > ∈   
 _asup min sup≥                                                           (1) 

A sequence 1 1,..., is x x=< >  is a sub-sequence of another 

sequence 2 1,..., is y y=< > , denoted by 1 2s s⊆ , if 

1,. ,' .. yj j∃ such that 1 21 ... ij j j j≤ < < <  and 

1 1 2 2, ,...,j j i jix y x y x y= = = . Given 1 2s s⊆ , we usually 
say s1 is a sub-pattern of s2, and s2 is a super-pattern of s1. To 
simplify the explanation, we refer to sequential patterns as 
patterns. 

3) Pattern statistics calculation 
After n-gram patterns are generated, they will be organized 

in the following fashion: 

( ) ( ) ( )1 1 2 2, , , ,......, ,
m m

i i i i i i id s f s f s f=  

                               
{ }1 2, ,....., nY d d d=

                         
(2) 

where js  in pair ( , )j js f denotes a pattern, and jf  is its 

frequency in id  , thus the result of this algorithm is a set of 

malware vectors. For each vector id Y∈ , the pattern 
significance can be calculated using term frequency-inverse 
document frequency (TF-IDF) weighting, where a term 
represents an n-gram sequential pattern, and a document 
represents a record of malware. A TF-IDF weight can be 
calculated as follows: 

                
( ) ( )* ( )i j i j i jY w TF w IDF w=

                         
(3) 

As a result, TF-IDF filters out common n-gram sequential 
patterns by giving low weights to patterns that appear 
frequently in the data set. 

4) Feature reduction 
There can be a large number of patterns. Although all of 

these features constitute the inputs of a classifier, they have 

different impacts to the classification performance. Some 
features may not increase the discriminative power of the 
classification among pattern classes. Vice versa some features 
may be highly correlated, and some may even be irrelevant for 
a specific classification. The sequential floating forward 
selection (SFFS) procedure [14] is thus applied to find a 
minimum feature set. It consists of applying after each forward 
step a number of backward steps as long as the resulting 
subsets are better than the previously evaluated ones at that 
level. Consequently, there are no backward steps at all if the 
performance cannot be improved. The SFFS method can be 
described, as follows:  

Input: Y = { id  | j = 1,…,n} 

Output:  Xk = {xi | j = 1,…,k, xj  Y} k = 0,1,…,n 

Initialize feature set: 0 { }; 0; ( ) 0Y m J mφ= = = .  

Step 1: Find the best feature and update Ym .  

arg max[ ( )];m mx J Y x x Y+ = − ∉  

; 1m mY Y x m m+= + = +  

Step 2 : Find the worst feature  

arg max[ ( )];m mx J Y x x Y− = − ∉  

If ( ) ( )m mJ Y x J Y−− >  then 1 ; 1m mY Y x m m+ = − = + .  

Go to step 1  

Else go to step 2                                                                 (4) 

 

B. Classification 
The classification model accepts the feature vector and 

returns the family of the malware. Three learning algorithms 
are studied in this research, which consist of C4.5, multilayer 
perceptron, and support vector machine. They are available in 
KNIME [15]. The malware is randomly split into two 
partitions: 80% for training and 20% for testing. 

1) Decision Tree (C4.5) 
The C4.5 decision tree [20] is a powerful and popular tool 

for classification and prediction. The algorithm uses gain ratio 
as the impurity measure for split calculation which can be 
calculated as: 

Information Gain = I(parent) – j=1 N(vj) / N * I(vj) 

Split info = – i=1 P(vi) log2 P(vi) 

                   Gain Ratio = information gain / split info            (5) 

A decision tree has three main components: nodes, arcs and 
leaves. Each node is labeled with feature attribute which is 
most informative among the attributes not yet considered in the 
path from the root. Each arcs out of a node is labeled with a 
feature value for the node, and each leaf is labeled with a 
category or class. A decision tree can then be used to classify a 
data point by starting at the root of the tree and moving through 
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it until a leaf node is reached. The leaf node would then 
provide the classification of the data point. 

2) Artificial Neural Network (ANN) 
We have used RProp MLP implementation in this study [21]. 

The RProp algorithm is a learning algorithm for multilayer 
feedforward networks. The following pseudo-code fragment 
shows the kernel of the RPROP adaptation and learning 
process. 

For all weights and biases { 

 If ( E / wij (t-1) * E / wij (t) > 0) then { 

  ij (t) = minimum ( ij (t - 1) * n+, max) 

  wij (t) = -sign ( E / wij (t)) * ij (t) 

  wij (t + 1) = wij (t) + wij(t) 

 } 

 Else if ( E / wij (t-1) * E / wij (t) < 0) then { 

  ij (t) = maximum ( ij (t - 1) * n-, min) 

  wij (t + 1) = wij(t) - wij (t - 1) 

  wij (t) = 0 

 } 

 Else If ( E / wij (t-1) * wij (t) = 0) then { 

  wij (t) = -sign ( E / wij (t)) * ij (t) 

  wij (t + 1) = wij (t) + wij(t) 

 } 

}                                                                                         (6) 

The minimum (maximum) operator is supposed to deliver 
the minimum (maximum) of two numbers; the sign operator 
returns +1 if the argument is positive, -1 if the argument is 
negative, and 0 otherwise. To overcome the inherent 
disadvantages of the pure gradient-descent, RPROP performs a 
local adaptation of the weight-updates according to the 
behavior of the error function. In substantial difference to other 
adaptive techniques, the effect of the RPROP adaptation 
process is not blurred by the unforeseeable influence of the size 
of the derivative but only dependent on the temporal behavior 
of its sign. This leads to an efficient and transparent adaptation 
process. 

3) Support Vector Machine (SVM)) 
SVM represent a supervised learning technique suitable for 

solving classification problems with high dimensional feature 
space. In this study, we use the LIBSVM implementation [22] 
with polynomial kernels function to train SVM. Although the 
basic technique is conceived for binary classification, several 
methods for single and multi-class problems have been 
developed. Being a supervised method, it relies on two phases: 
during the training phase, the algorithm acquires knowledge 
about the classes by examining the training set that describes 
them. During the testing phase, a classification mechanism 
examines the test set and associates its members to the classes 
that are available. The target of the algorithm is the estimation 
of boundaries between the classes. Given training vectors xi  

Rn, i = 1, 2, ..., l in two classes, and a vector y  Rl such that 
each yi  {+1, 1}, an SVM for non-separable data considers 
the following optimization problem [22]: 

 
min ½ * wTw + C  l

i=1 iyi(wTK(si, x) + b), 
                         subject to i  0,i = 1, 2, ..., l                      (7) 

 
In the objective function, w is a perpendicular to the 

hyperplane that separates the positive and negative points, C is 
a parameter that is used to cost the i, K(si, x) is a non-linear 
kernel that maps the input data to another (possibly infinite 
dimensional) Euclidean space, and si are the points called the 
support vectors that maximize the separation between the 
positive and negative. Default settings are chosen for all other 
parameters. 

IV. DATA SET 
VX Heavens Virus Collection [10] database is used as the 

dataset for evaluations. In our study, we classify malware into 
10 families. Backdoors contains one family with 2,014 files. 
Trojan horses consist of 4 families which are Trojan.BAT (834 
files), Trojan.DOS (858 files), Trojan-Downloader.win32 (624 
files), and Trojan.win32 (818 files). Viruses contains 3 
families:  Virus.MSWord (712 files), Virus.DOS (984 files), 
and Virus.BAT (590 files). Worms consists of 2 families: 
Worm.win32 (1,907 files) and Email-worm.win32 (2,854 
files). All together, there are 10 malware families with a total 
of 12,199 files.  

 

TABLE I.  FEATURE CHARATERISTICS 

N 

Feature Characteristics 

N-Grams Sequential Patterns Final Features 

1 256 2,169 1,356 

2 35,491 22,313 6,714 

3 104,213 55,023 10,482 

4 218,469 87,285 14,908 

 

V. RESULT 
The dataset is divided into two subsets 80% for training and 

20% for testing. Three different classification models are 
explored. 
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TABLE II.  MALWARE CLASSIFICATION PERFORMANCE 

N-GRAMS 

Accuracy 

DT (C4.5) ANN (RProp MLP) SVM 

1-gram 71.83% 72.29% 75.44% 

2-gram 82.10% 82.85% 83.91% 

3-gram 88.74% 84.82% 92.96% 

4-gram 91.25% 88.31% 96.64% 

 

Table 1 shows the numbers of n-grams, sequential patterns, 
and final features while varying the values of n from 1 to 4. We 
can see that a higher value of n yields more n-grams; more n-
gram yields more sequential patterns, thus a larger set of final 
features after feature reduction. The final feature sets consist 
of: 1,356 patterns for 1-gram, 6,714 patterns for 2-gram, 
10,482 patterns for 3-gram, and 14,908 patterns for 4-gram. 
These features are then used in the model. 

For classification process, we have ten malware families or 
ten classes to be determined. C4.5, ANN, and SVM are tested 
with each n-gram size. The classification results are shown in 
Table 2. 

We can observe that SVM is the best classification in every 
size of n-gram; the receiver operating characteristics (ROC) 
curve (Figure 4) also shows the higher relative performance of 
SVM over the other two classifiers. However, the relative 
performance between C4.5 and ANN is unclear. With n = 1 
and 2, ANN tends to give higher accuracy while the opposite is 
observed with n = 3 and 4. The larger n-gram yields the higher 
accuracy in general to capture unique characteristics of 
different families in the presence of various obfuscations. 

The experimental results for classification of malware 
families used in experiments show that the proposed features 
have the ability to achieve high classification accuracy. 

 

 
Figure 4. ROC plot for classification. 

VI. CONCLUSIONS 
Malware family identification is a complex process 

involving extraction of distinctive characteristics from a set of 
malware samples while authors employ various obfuscation 
techniques to prevent the identification of unique 
characteristics of their programs. In this paper, we propose n-
grams sequential pattern features for classifying malware into 
10 families. N-grams are created from the binary content of 
files; n-gram sequential patterns are formed; and patterns are 
reduced to a minimal set by sequential floating forward 
selection procedure. Four different sizes of n-grams (n = 1, 2, 
3, and 4) are studied; and 3 classification models (C4.5 
decision tree, artificial neural network, and support vector 
machine) are studied. Due to the complexities of malware, the 
larger n-gram size yields the higher accuracy. The proposed 
feature achieves 96.64% in accuracy with 4-gram and support 
vector machine. 
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