
Classification of Malware Families Based on
N-grams Sequential Pattern Features

Chatchai Liangboonprakong
Department of Computer Science

Suan Sunandha Rajabhat University
Bangkok, Thailand

chatcchai.li@ssru.ac.th

Ohm Sornil
Department of Computer Science

National Institute of Development Administration
Bangkok, Thailand

osornil@as.nida.ac.th

Abstract—Malware family identification is a complex process
involving extraction of distinctive characteristics from a set of
malware samples. Malware authors employ various techniques to
prevent the identification of unique characteristics of their
programs, such as, encryption and obfuscation. In this paper, we
present n-gram based sequential features extracted from content
of the files. N-grams are extracted from files; sequential n-gram
patterns are determined; pattern statistics are calculated and
reduced by the sequential floating forward selection method; and
a classifier is used to determine the family of malware. Three
classification models: C4.5, multilayer perceptron, and support
vector machine are studied. Experimental results on a standard
malware test collection show that the proposed method performs
well, with the classification accuracy of 96.64%.

Keywords—Malware Classification, N-Gram, Sequential Pattern,
Sequential Floating Forward Selection, C4.5, Multilayer
Perceptron, Support Vector Machine.

I. INTRODUCTION
Development of malware poses a major threat to modern

information technology. A common method of launching
computer attacks is by means of malware such as backdoors,
Trojan horses, viruses and worms, which can cause severe
damages to security and privacy of computer systems and
networks worldwide. Malware has evolved into a powerful
instrument for illegal commercial activities, and a significant
effort is made by its authors to thwart detection by anti-
malware products.

General analysis techniques for detecting malware are
commonly classified into dynamic and static approaches. In
dynamic analysis (also known as behavioral analysis),
detection of malware relies on information that is collected
from the operating system at runtime (i.e., during the execution
of the program) such as system calls, network access and files
[1]. This approach has several disadvantages. First, it is
difficult to simulate appropriate conditions for malicious
functions of a program, such as the vulnerable applications that
the malware will be activated. Secondly, it is not clear what the
required period of time is needed to observe the appearance of
the malicious activity of a program. In static analysis,
information about a program or its expected behaviors employs
explicit and implicit observations in its binary code. The main
advantage of static analysis is its ability to examine a suspected

file without actually executing it and thereby provides rapid
classification [2].

Our goal in this research is to introduce a novel set of
features for effective classification of malware families. The
features are based on n-gram sequential patterns, extracted
from disassembling files. Three classification models are
explored with the proposed features which consist of C4.5,
multilayer perceptron, and support vector machine.
Experimental evaluations on a standard malware data
collection are performed to evaluate the proposed technique.

II. RELATED WORK
Several techniques have been studied in the past for malware

detection. Cohen [23], Chess and White [24] use sandboxing to
detect viruses. They show that in general the problem of virus
detection is undecidable. Christodorescu and Jha [25] detect
malicious code in executable files. Their implementation,
called SAFE, handles most common types of obfuscations used
by malware writers, such as insertion of NOPs between
instructions, to evade detection.

In [33], Christodorescu et al. exploit semantic heuristics to
detect obfuscated malware. Although, their approach works
well for obfuscated malicious programs, the time taken (over a
minute to classify) by their approach makes it impractical for
use in commercial antivirus scanners. Kruegel et al [26] use
control flow graph information and statistical methods for
disassembling obfuscated executables. Bergeron et al. [27]
consider critical API calls and security policies to test for
presence of malicious code. Their approach does not work for
obfuscated malicious executables. Zhang et al. [28] use fuzzy
pattern recognition to detect unknown malicious code. The
approach does not handle obfuscated program binaries and
gives many false positives. Martignoni et al. [30] use real-time
program monitoring to detect obfuscation in memory. Their
implementation OmniUnpack detects obfuscation for both
known and unknown packers. Zhang [31] identifies patterns of
system or library functions called by a malware sample to
detect their metamorphic versions. Bilar [29] uses statistical
structures such as opcode frequency distribution and graph
structure fingerprints to detect malicious programs.

An approach to represent malware content is the use of n-
grams which are substrings of a larger string with length n. N-

777978-1-4673-6322-8/13/$31.00 c©2013 IEEE

grams exist in constant malware parts although obfuscation
techniques are used. These obfuscations are considered part of
a file. Representations of malware by using n-gram profiles
have been presented in the literature, see for example [32], [3]
and [5]. In these studies some promising results towards
malware detection are presented. However, malware domain
has been evolving due to survivability requirements. Malware
has to evade anti-virus scanners to perform its functions.
Obfuscation techniques have been developed in order to avoid
detection by anti-virus scanners. And these techniques affect n-
gram features in the binary form of malware used by previous
work. Similar methodologies have been used in source
authorship, information retrieval, and natural language
processing [34], [35]. Abou-Assaleh et al. [3] contribute to the
ongoing research while using common n-gram profiles. The K
nearest neighbor algorithm with k=1 is used. A feature set is
constituted by using the n-grams and the occurrence frequency.
Tests have been done with different values of n (ranging from
1 to 10) and frequencies (ranging from 20 to 5000). The data
set used in these experiments comprises 25 malware and 40
benign files. The test results show 98% of success. Using the
data in [3], the accuracy slightly drops to around 94%. Kolter et
al. [5] use 4-grams as features and select top 500 n-grams
through information gain measure. They use instance based
learners, TF-IDF, naïve Bayes, support vector machines, and
decision trees and also boost the last three learners. The
boosted decision tree outperforms all other and gives promising
results, such as ROC curve of 0.996. Walenstein et al. [9]
explore the use of n-grams and unordered n-perms to
disassembly. This has the benefit of using features from
specific malware, however, because all n-perms of a file are
considered, there is no opportunity to select those features that
may distinguish a family in question from other similarly
constructed files.

Figure 1. Architecture of the proposed method.

III. METHODOLOGY
In this section, the malware detection process, as shown in
Figure 1, is described.

A. FeaturesExtraction
Features are created in 4 major steps: n-gram extraction,

sequential pattern extraction, pattern statistics calculation, and
feature reduction.

1) N-grams extraction
An n-gram is an n-character slice of a longer string. First,

IDA-Pro [11], a tool that disassembler files, is used to extract
content of a file into a long string of hexadecimals. The string
is then processed into a set of overlapping n-grams. In our
study, we explore n-grams of several different lengths. The
kfngram tool [18] is employed to generate n-gram slices. In the
experiments our tests are run with n=1, n=2, n=3 and n=4. The
resulting n-gram-malware matrix is shown in Figure 2.

2) Sequential pattern extraction
There are a very large number of n-grams, but there is no

order information. Sequential pattern extraction [19] is
employed to find the frequently occurred sequences to describe
the data. We implemented the techniques according to [12,13]
which can reduce response time to find patterns in sequence
data.

After processing a malware into n-grams, malware m can be
represented by a set of malware file F(m).

Figure 2. N-gram-malware matrix.

 Let 1 2{ , ,..., }mT t t t= be a set of terms (n-grams) which
are resulted from n-gram extraction. Given X be a set of terms
(termset) in malware m, coverset(X) denotes the covering set of
X for m, which includes all malware file ()mw F m∈ , where
X mw⊆ , i.e., () { | (), }mw mcoverset w F m X mwX = ∈ ⊆ , the
absolute support of X is the number of occurrences of X in

()()() : | |aF sup X covm erset X= , the relative support of X is
the fraction of the malware file that contain the pattern:

()() | | / | () |asup X coverset X F m= . The relationships between
frequent patterns and covering sets are shown in Figure 3. A
termset X called frequent pattern if its _asup min sup≥ , a
minimum support.

778 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA)

Figure 3. Frequent patterns and covering sets.

 A sequential pattern is an ordered list of terms, where its

1,..., : ()r iS t t t T=< > ∈
 _asup min sup≥ (1)

A sequence 1 1,..., is x x=< > is a sub-sequence of another

sequence 2 1,..., is y y=< > , denoted by 1 2s s⊆ , if

1,. ,' .. yj j∃ such that 1 21 ... ij j j j≤ < < < and

1 1 2 2, ,...,j j i jix y x y x y= = = . Given 1 2s s⊆ , we usually
say s1 is a sub-pattern of s2, and s2 is a super-pattern of s1. To
simplify the explanation, we refer to sequential patterns as
patterns.

3) Pattern statistics calculation
After n-gram patterns are generated, they will be organized

in the following fashion:

() () ()1 1 2 2, , , ,......, ,
m m

i i i i i i id s f s f s f=

{ }1 2, ,....., nY d d d=

(2)

where js in pair (,)j js f denotes a pattern, and jf is its

frequency in id , thus the result of this algorithm is a set of

malware vectors. For each vector id Y∈ , the pattern
significance can be calculated using term frequency-inverse
document frequency (TF-IDF) weighting, where a term
represents an n-gram sequential pattern, and a document
represents a record of malware. A TF-IDF weight can be
calculated as follows:

() ()* ()i j i j i jY w TF w IDF w=

(3)

As a result, TF-IDF filters out common n-gram sequential
patterns by giving low weights to patterns that appear
frequently in the data set.

4) Feature reduction
There can be a large number of patterns. Although all of

these features constitute the inputs of a classifier, they have

different impacts to the classification performance. Some
features may not increase the discriminative power of the
classification among pattern classes. Vice versa some features
may be highly correlated, and some may even be irrelevant for
a specific classification. The sequential floating forward
selection (SFFS) procedure [14] is thus applied to find a
minimum feature set. It consists of applying after each forward
step a number of backward steps as long as the resulting
subsets are better than the previously evaluated ones at that
level. Consequently, there are no backward steps at all if the
performance cannot be improved. The SFFS method can be
described, as follows:

Input: Y = { id | j = 1,…,n}

Output: Xk = {xi | j = 1,…,k, xj Y} k = 0,1,…,n

Initialize feature set: 0 { }; 0; () 0Y m J mφ= = = .

Step 1: Find the best feature and update Ym .

arg max[()];m mx J Y x x Y+ = − ∉

; 1m mY Y x m m+= + = +

Step 2 : Find the worst feature

arg max[()];m mx J Y x x Y− = − ∉

If () ()m mJ Y x J Y−− > then 1 ; 1m mY Y x m m+ = − = + .

Go to step 1

Else go to step 2 (4)

B. Classification
The classification model accepts the feature vector and

returns the family of the malware. Three learning algorithms
are studied in this research, which consist of C4.5, multilayer
perceptron, and support vector machine. They are available in
KNIME [15]. The malware is randomly split into two
partitions: 80% for training and 20% for testing.

1) Decision Tree (C4.5)
The C4.5 decision tree [20] is a powerful and popular tool

for classification and prediction. The algorithm uses gain ratio
as the impurity measure for split calculation which can be
calculated as:

Information Gain = I(parent) – j=1 N(vj) / N * I(vj)

Split info = – i=1 P(vi) log2 P(vi)

 Gain Ratio = information gain / split info (5)

A decision tree has three main components: nodes, arcs and
leaves. Each node is labeled with feature attribute which is
most informative among the attributes not yet considered in the
path from the root. Each arcs out of a node is labeled with a
feature value for the node, and each leaf is labeled with a
category or class. A decision tree can then be used to classify a
data point by starting at the root of the tree and moving through

2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) 779

it until a leaf node is reached. The leaf node would then
provide the classification of the data point.

2) Artificial Neural Network (ANN)
We have used RProp MLP implementation in this study [21].

The RProp algorithm is a learning algorithm for multilayer
feedforward networks. The following pseudo-code fragment
shows the kernel of the RPROP adaptation and learning
process.

For all weights and biases {

 If (E / wij (t-1) * E / wij (t) > 0) then {

 ij (t) = minimum (ij (t - 1) * n+, max)

 wij (t) = -sign (E / wij (t)) * ij (t)

 wij (t + 1) = wij (t) + wij(t)

 }

 Else if (E / wij (t-1) * E / wij (t) < 0) then {

 ij (t) = maximum (ij (t - 1) * n-, min)

 wij (t + 1) = wij(t) - wij (t - 1)

 wij (t) = 0

 }

 Else If (E / wij (t-1) * wij (t) = 0) then {

 wij (t) = -sign (E / wij (t)) * ij (t)

 wij (t + 1) = wij (t) + wij(t)

 }

} (6)

The minimum (maximum) operator is supposed to deliver
the minimum (maximum) of two numbers; the sign operator
returns +1 if the argument is positive, -1 if the argument is
negative, and 0 otherwise. To overcome the inherent
disadvantages of the pure gradient-descent, RPROP performs a
local adaptation of the weight-updates according to the
behavior of the error function. In substantial difference to other
adaptive techniques, the effect of the RPROP adaptation
process is not blurred by the unforeseeable influence of the size
of the derivative but only dependent on the temporal behavior
of its sign. This leads to an efficient and transparent adaptation
process.

3) Support Vector Machine (SVM))
SVM represent a supervised learning technique suitable for

solving classification problems with high dimensional feature
space. In this study, we use the LIBSVM implementation [22]
with polynomial kernels function to train SVM. Although the
basic technique is conceived for binary classification, several
methods for single and multi-class problems have been
developed. Being a supervised method, it relies on two phases:
during the training phase, the algorithm acquires knowledge
about the classes by examining the training set that describes
them. During the testing phase, a classification mechanism
examines the test set and associates its members to the classes
that are available. The target of the algorithm is the estimation
of boundaries between the classes. Given training vectors xi

Rn, i = 1, 2, ..., l in two classes, and a vector y Rl such that
each yi {+1, 1}, an SVM for non-separable data considers
the following optimization problem [22]:

min ½ * wTw + C l

i=1 iyi(wTK(si, x) + b),
 subject to i 0,i = 1, 2, ..., l (7)

In the objective function, w is a perpendicular to the

hyperplane that separates the positive and negative points, C is
a parameter that is used to cost the i, K(si, x) is a non-linear
kernel that maps the input data to another (possibly infinite
dimensional) Euclidean space, and si are the points called the
support vectors that maximize the separation between the
positive and negative. Default settings are chosen for all other
parameters.

IV. DATA SET
VX Heavens Virus Collection [10] database is used as the

dataset for evaluations. In our study, we classify malware into
10 families. Backdoors contains one family with 2,014 files.
Trojan horses consist of 4 families which are Trojan.BAT (834
files), Trojan.DOS (858 files), Trojan-Downloader.win32 (624
files), and Trojan.win32 (818 files). Viruses contains 3
families: Virus.MSWord (712 files), Virus.DOS (984 files),
and Virus.BAT (590 files). Worms consists of 2 families:
Worm.win32 (1,907 files) and Email-worm.win32 (2,854
files). All together, there are 10 malware families with a total
of 12,199 files.

TABLE I. FEATURE CHARATERISTICS

N

Feature Characteristics

N-Grams Sequential Patterns Final Features

1 256 2,169 1,356

2 35,491 22,313 6,714

3 104,213 55,023 10,482

4 218,469 87,285 14,908

V. RESULT
The dataset is divided into two subsets 80% for training and

20% for testing. Three different classification models are
explored.

780 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA)

TABLE II. MALWARE CLASSIFICATION PERFORMANCE

N-GRAMS

Accuracy

DT (C4.5) ANN (RProp MLP) SVM

1-gram 71.83% 72.29% 75.44%

2-gram 82.10% 82.85% 83.91%

3-gram 88.74% 84.82% 92.96%

4-gram 91.25% 88.31% 96.64%

Table 1 shows the numbers of n-grams, sequential patterns,
and final features while varying the values of n from 1 to 4. We
can see that a higher value of n yields more n-grams; more n-
gram yields more sequential patterns, thus a larger set of final
features after feature reduction. The final feature sets consist
of: 1,356 patterns for 1-gram, 6,714 patterns for 2-gram,
10,482 patterns for 3-gram, and 14,908 patterns for 4-gram.
These features are then used in the model.

For classification process, we have ten malware families or
ten classes to be determined. C4.5, ANN, and SVM are tested
with each n-gram size. The classification results are shown in
Table 2.

We can observe that SVM is the best classification in every
size of n-gram; the receiver operating characteristics (ROC)
curve (Figure 4) also shows the higher relative performance of
SVM over the other two classifiers. However, the relative
performance between C4.5 and ANN is unclear. With n = 1
and 2, ANN tends to give higher accuracy while the opposite is
observed with n = 3 and 4. The larger n-gram yields the higher
accuracy in general to capture unique characteristics of
different families in the presence of various obfuscations.

The experimental results for classification of malware
families used in experiments show that the proposed features
have the ability to achieve high classification accuracy.

Figure 4. ROC plot for classification.

VI. CONCLUSIONS
Malware family identification is a complex process

involving extraction of distinctive characteristics from a set of
malware samples while authors employ various obfuscation
techniques to prevent the identification of unique
characteristics of their programs. In this paper, we propose n-
grams sequential pattern features for classifying malware into
10 families. N-grams are created from the binary content of
files; n-gram sequential patterns are formed; and patterns are
reduced to a minimal set by sequential floating forward
selection procedure. Four different sizes of n-grams (n = 1, 2,
3, and 4) are studied; and 3 classification models (C4.5
decision tree, artificial neural network, and support vector
machine) are studied. Due to the complexities of malware, the
larger n-gram size yields the higher accuracy. The proposed
feature achieves 96.64% in accuracy with 4-gram and support
vector machine.

REFERENCES
[1] K. Rieck, T. Holz, P. Dussel, and P. Laskov, “Learning and

classification of malware behavior” in Conference on Detection of
Intrusions and Malware & Vulnerability Assessment Heidelberg,
Springer, 2007, pp. 108-125.

[2] A. Shabtai, D. Potashnik, Y. Fledel, R. Moskovitch, and E.
Elovici, “Monitoring analysis and filtering system for purifying
network traffic of known and unknown malicious content”
Security and Communication Networks, 2010.

[3] T. Abou-Assaleh, V. Keselj, and R. Sweidan, “N-gram based
detection of new malicious code” Proceeding of the 28th
Annual International Computer Software and Applications
Conferen c2007e IEEE Computer Society, 2004, pp. 41-42.

[4] M. G. Schultz, E. Eskin, E. Zadok and S.J. Stolfo, “Data Mining
Methods for Detection of New Malicious Excutables”
Proceedings of the 2001 IEEE Symposium on Security and
Privacy, 2001, pp. 38-49.

[5] J. Z. Kolter and M. A. Maloof, “Learning to Detect Malicious
Excutable in the Wild” The Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, New York, USA, 2004 pp. 470-478.

[6] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify
Malicious Executables in the Wild” Journal of Machine
Learning Research, 2006, pp. 2721-2744.

[7] M. Schmall, “Heuristic Techniques in Anti-Virus Solutions: An
Overview”, 2002.

[8] M. Baily, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian and
J. Nazario, “Automated classification and analysis of internet
malware” Lecture Notes in Computer Science, Spinger, pp.178-
197.

[9] A. Walenstein, M. Venable, M. Hayes, C. Thompson, and A.
Lakhotia, “Exploiting similarity between variants to defeat
malware” Proceeding of BlackHat 2007 DC Briefings, 2007.

[10] VX Heavens Virus Collection, VX Heavens website, available
at http://vx.netlux.org

[11] IDA-Pro Tool, available at http:// www.hex-rays.com
[12] L. Pipanmaekaporn and Y. Li, “Mining a Data Reasoning Model

for Personalized Text Classification” IEEE Intelligent
Informatics Bulletin, 2011, pp. 17-24.

[13] N. Zhong, Y. Li and S. T. Wu, “Effective Pattern Discovery for
Text Mining” IEEE Transactions on Knowledge and Data
Engineering, 2012.

[14] P. Pudil, F. J. Ferri, J. Novovicova and J. Kittler, “Floating
search methods for feature selection with nonmonotonic
criterion functions” International Conference on Pattern
Recognition, 1994, pp. 279-283.

2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) 781

[15] KNIME Data Mining Tool, available at http:// www.knime.org
[16] J. H. Wang, P. S. Deng, Y. S. Fan, L. J. Jaw and Y. C. Liu,

“Virus Detection Using Data Mining Techniques” In
Proceedings of the IEEE 37th Annual International Conference
on security Technology, 2003, pp.71-76.

[17] P. Kierski, M. Okoniewski, P. Gawrysiak, “Automatic
Classification of Executable Code for Computer Virus
Detection” International Conference on Intelligent Information
Systems, Springer, Poland, 2003, pp. 277-284.

[18] KfNgram, available at http://www.kwicfinder.com/kfNgram
[19] R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules in Large Databases”, 1994, pp. 478-499.
[20] J. Ross Quinlan, “C4.5: Programs for Machine Learning”

Morgan Kaufman, 1993.
[21] H. Riedmiller, and M. Braun, “A direct adaptive method for

faster backpropagation learning: theRPROP algorithm”
Proceedings of the IEEE International Conference on Neural
Networks (ICNN) pp. 586-591.

[22] LIBSVM Tool, available at http://www.csie.ntu.edu.tw/~cjlin/
[23] F. Cohen, “Computer Virus Theory and experiments”,

Computers and Security 6, 1987, pp. 22–35.
[24] D.M. Chess, and S.R. White, “An undetectable computer virus”

In Proceedings of Virus Bulletin Conference, 2000.
[25] M. Christodorescu, and S. Jha, “Static Anlaysis of Executables

to Detect Malicious Patterns”, In Proceeding of the 12th
USENIX Security Symp Security 2003, pp.169–186.

[26] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static
disassembly of obfuscated binaries”, In Proceedings of USENIX
Security, San Diego, CA, 2007, pp. 255–270.

[27] J. Bergeron, M. Debbabi, J. Desharnais, M.M Erhioui, Y. Lavoie,
and N. Tawbi, “Static Detection of Malicious Code in
Executable Programs”, In Symposium on Requirements
Engineering for Information Security, 2001.

[28] B. Zhang, J. Yin, and J. Hao, “Using Fuzzy Pattern Recognition
to Detect Unknown Malicious Executables Code”, Fuzzy
Systems and Knowledge Discovery. LNCS (LNAI), vol. 3613,
2005, pp. 629–634.

[29] D. Bilar, “Statistical Structures: Tolerant Fingerprinting for
Classification and Analysis”, Las Vegas, NV. Blackhat
Briefings USA, 2006.

[30] L. Martignoni, M. Christodorescu, and S. Jha, “OmniUnpack:
Fast, Generic, and Safe Unpacking of Malware”, In Twenty-
Third Annual Computer Security Applications Conference
(ACSAC), Miami Beach, 2007.

[31] Q. Zhang, and D.S. Reeves, “MetaAware: Identifying
Metamorphic Malware”, In: Annual Computer Security
Applications Conference, 2007.

[32] I. Santos, Y. K. Penya, J. Devesa, and P.G. Bringas, “n-Grams-
Based File Signatures For Malware Detection”, The Proceedings
of the 11th International Conference on Enterprise Information
Systems, Volume AIDSS, 2009, pp. 317-320.

[33] M. Christodorescu, S. Jha, A. Seshia, D. Song, R.E. Bryant,
“Semantics-Aware Malware Detection”, In Proceedings of the
2005 IEEE Symposium on Security and Privacy, May 08-11,
2005, pp. 32–46.

[34] S. Burrows and S. M. M Tahaghoghi, “Source code authorship
attribution using n-grams”, In Proceedings of the Twelfth
Australasian Document Computing Symposium, A. Spink, A.
Turpin, and M. Wu, Eds. RMIT University, Melbourne,
Australia, 2007, pp. 32–39.

[35] G. Frantzeskou, E. Stamatatos, S. Gritzalis and S. Katsikas,
“Effective identification of source code authors using byte-level
information”, In Proceedings of the Twenty-Eighth International
Conference on Software Engineering, ACM Press, Shanghai,
China, 2006, pp. 893–896.

[36] Y. Ye, T. Li, Q. Jiangshan and Y. Wang, “CIMDS: Adapting
Postprocessing Techniques of Associative Classification for

Malware Detection”, IEEE : Applications and Reviews, Vol. 40,
No. 3, 2010.

782 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

